Discretization of coupled modified KdV equations

被引:25
|
作者
Hirota, R [1 ]
机构
[1] Waseda Univ, Sch Sci & Engn, Dept Informat & Comp Sci, Shinjuku Ku, Tokyo 169, Japan
关键词
D O I
10.1016/S0960-0779(98)00270-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The coupled modified KdV equation partial derivative v(i)/partial derivative t + 3 [(j,k=1)Sigma(N)c(j,k)v(j)v(k)] partial derivative v(i)/partial derivative x + partial derivative(3)v(i)/partial derivative x(3) = 0, i = 1,2,...,N, is discretized in the form v(i.n)(m+1) - v(i.n)(m) + delta [1 + (j.k=1)Sigma(N)c(j,k)v(j,n)(m)v(k,n)(m)] Gamma(n)(m) [v(i,n+1)(m)-v(i,n-1)(m divided by 1)] = 0, i = 1,2...,N, Gamma(n-1)(m) = [1 + (j,k=1)Sigma(N) c(j,k)v(j,n)(m)v(k,n)(m)] Gamma(n)(m)/ [1 + (j,k=1)Sigma(N)c(j,k)v(j,n)(m+1)v(k,n)(m+1)], where Gamma(n)(m) is an auxiliary variable. We integrate the difference equation numerically and compare the results with exact solutions. (C) 1999 Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:77 / 84
页数:8
相关论文
共 50 条
  • [41] Variable separation solutions and interacting waves of a coupled system of the modified KdV and potential BLMP equations
    Tang, Xiao-yan
    Li, Jing
    Liang, Zu-feng
    Wang, Jian-yong
    [J]. PHYSICS LETTERS A, 2014, 378 (21) : 1439 - 1447
  • [42] Integrable discretization of coupled nonlinear Schrodinger equations
    Tsuchida, T
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2000, 46 (1-2) : 269 - 278
  • [43] Stabilization and Discretization of the Coupled Heat and Wave Equations
    Yang K.-Y.
    Zhang X.
    [J]. Mathematical Problems in Engineering, 2023, 2023
  • [44] On soliton and other exact solutions of the combined KdV and modified and generalized KdV equations
    Bokhari, AH
    Kara, AH
    Zaman, FD
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2005, 120 (04): : 393 - 396
  • [45] COUPLED KDV EQUATIONS WITH MULTI-HAMILTONIAN STRUCTURES
    ANTONOWICZ, M
    FORDY, AP
    [J]. PHYSICA D, 1987, 28 (03): : 345 - 357
  • [46] New exact solutions to a system of coupled KdV equations
    Fan, EG
    Zhang, HQ
    [J]. PHYSICS LETTERS A, 1998, 245 (05) : 389 - 392
  • [47] New analytic solutions of stochastic coupled KdV equations
    Dai, Chaoqing
    Chen, Junlang
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 42 (04) : 2200 - 2207
  • [48] EXPLICIT SOLUTIONS TO THE COUPLED KdV EQUATIONS WITH VARIABLE COEFFICIENTS
    徐桂琼
    李志斌
    [J]. Applied Mathematics and Mechanics(English Edition), 2005, (01) : 101 - 107
  • [49] Coupled discrete KdV equations and modular genetic networks
    Carstea, A. S.
    Tokihiro, T.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (05)
  • [50] EXACT-SOLUTIONS FOR THE BOGOYAVLENSKII COUPLED KDV EQUATIONS
    TIAN, B
    GAO, YT
    [J]. PHYSICS LETTERS A, 1995, 208 (03) : 193 - 196