Integrable discretization of coupled nonlinear Schrodinger equations

被引:7
|
作者
Tsuchida, T [1 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
关键词
D O I
10.1016/S0034-4877(01)80032-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A discrete version of the inverse scattering method proposed by Ablowitz, and Ladik is generalized to study an integrable full discretization (discrete time and discrete space) of coupled nonlinear Schrodinger equations. The generalization enables one to solve the initial value problem. Soliton solutions and conserved quantities of the full discrete system are constructed.
引用
收藏
页码:269 / 278
页数:10
相关论文
共 50 条
  • [1] Integrable semi-discretization of the coupled nonlinear Schrodinger equations
    Tsuchida, T
    Ujino, H
    Wadati, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (11): : 2239 - 2262
  • [2] Discretization of Coupled Nonlinear Schrodinger Equations
    Ohta, Yasuhiro
    [J]. STUDIES IN APPLIED MATHEMATICS, 2009, 122 (04) : 427 - 447
  • [3] Integrable properties of the general coupled nonlinear Schrodinger equations
    Wang, Deng-Shan
    Zhang, Da-Jun
    Yang, Jianke
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)
  • [4] A note to the integrable discretization of the mKdV and Schrodinger equations
    Zhang, Yi
    Ding, Dajun
    Cheng, Tengfei
    Dang, Xiaolan
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (14) : 3086 - 3092
  • [5] A note on an integrable discretization of the nonlinear Schrodinger equation
    Black, W
    Weideman, JAC
    Herbst, BM
    [J]. INVERSE PROBLEMS, 1999, 15 (03) : 807 - 810
  • [6] A note on an integrable discretization of the nonlinear Schrodinger equation
    Suris, YB
    [J]. INVERSE PROBLEMS, 1997, 13 (04) : 1121 - 1136
  • [7] Integrable pair-transition-coupled nonlinear Schrodinger equations
    Ling, Liming
    Zhao, Li-Chen
    [J]. PHYSICAL REVIEW E, 2015, 92 (02):
  • [8] On the Discretization of the Coupled Integrable Dispersionless Equations
    Luc Vinet
    Guo-Fu Yu
    [J]. Journal of Nonlinear Mathematical Physics, 2013, 20 : 106 - 125
  • [9] On the Discretization of the Coupled Integrable Dispersionless Equations
    Vinet, Luc
    Yu, Guo-Fu
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2013, 20 (01) : 106 - 125
  • [10] Homoclinic and heteroclinic orbits for near-integrable coupled nonlinear Schrodinger equations
    Deng, Guifeng
    Zhu, Deming
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (04) : 817 - 827