Coupled modified KdV equations, skew orthogonal polynomials, convergence acceleration algorithms and Laurent property

被引:3
|
作者
Chang, Xiangke [1 ,2 ]
He, Yi [3 ]
Hu, Xingbiao [1 ,2 ]
Li, Shihao [1 ,2 ]
Tam, Hon-wah [4 ]
Zhang, Yingnan [5 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Hubei, Peoples R China
[4] Hong Kong Baptist Univ, Dept Comp Sci, Kowloon Tong, Hong Kong, Peoples R China
[5] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
integrable system; skew orthogonal polynomial; convergence acceleration algorithm; Laurent property; DISCRETE INTEGRABLE SYSTEMS; LOTKA-VOLTERRA SYSTEM; RANDOM-MATRIX THEORY; SHANKS TRANSFORMATION; EPSILON-ALGORITHM; TODA CHAIN; ALGEBRAS;
D O I
10.1007/s11425-016-9072-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the coupled modified KdV equations possess rich mathematical structures and some remarkable properties. The connections between the system and skew orthogonal polynomials, convergence acceleration algorithms and Laurent property are discussed in detail.
引用
收藏
页码:1063 / 1078
页数:16
相关论文
共 48 条
  • [1] Coupled modified KdV equations, skew orthogonal polynomials, convergence acceleration algorithms and Laurent property
    Xiangke Chang
    Yi He
    Xingbiao Hu
    Shihao Li
    Hon-wah Tam
    Yingnan Zhang
    [J]. Science China Mathematics, 2018, 61 : 1063 - 1078
  • [2] Coupled modified Kd V equations, skew orthogonal polynomials, convergence acceleration algorithms and Laurent property
    Xiangke Chang
    Yi He
    Xingbiao Hu
    Shihao Li
    Hon-wah Tam
    Yingnan Zhang
    [J]. Science China Mathematics, 2018, 61 (06) : 1063 - 1078
  • [3] Laurent skew orthogonal polynomials and related symplectic matrices
    Miki, Hiroshi
    [J]. JOURNAL OF APPROXIMATION THEORY, 2020, 259
  • [4] MCCOY PROPERTY OF SKEW LAURENT POLYNOMIALS AND POWER SERIES RINGS
    Alhevaz, A.
    Kiani, D.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (02)
  • [5] Acceleration of convergence of sequences via orthogonal polynomials
    Laurie, D. P.
    [J]. Numerical Analysis and Applied Mathematics, 2007, 936 : 15 - 18
  • [6] On complexly coupled modified KdV equations
    Choudhuri, Amitava
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2010, 75 (04): : 709 - 718
  • [7] On complexly coupled modified KdV equations
    Choudhuri A.
    [J]. Pramana, 2010, 75 (4) : 709 - 718
  • [8] Discretization of coupled modified KdV equations
    Hirota, R
    [J]. CHAOS SOLITONS & FRACTALS, 2000, 11 (1-3) : 77 - 84
  • [9] ''Molecule solutions'' of coupled modified KdV equations
    Hirota, R
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (09) : 2530 - 2532
  • [10] Soliton solutions of a coupled modified KdV equations
    Iwao, M
    Hirota, R
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (03) : 577 - 588