Weak and Strong Confinement in the Freud Random Matrix Ensemble and Gap Probabilities

被引:0
|
作者
T. Claeys
I. Krasovsky
O. Minakov
机构
[1] UCLouvain,Institut de Recherche en Mathématique et Physique
[2] Imperial College London,Department of Mathematics
[3] Charles University,Department of Mathematical Analysis, Faculty of Mathematics and Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Freud ensemble of random matrices is the unitary invariant ensemble corresponding to the weight exp(-n|x|β),β>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp (-n |x|^{\beta }),\ \beta >0$$\end{document}, on the real line. We consider the local behaviour of eigenvalues near zero, which exhibits a transition in β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}. If β≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \ge 1$$\end{document}, it is described by the standard sine process. Below the critical value β=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta =1$$\end{document}, it is described by a process depending on the value of β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, and we determine the first two terms of the large gap probability in it. This so called weak confinement range 0<β<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\beta <1$$\end{document} corresponds to the Freud weight with the indeterminate moment problem. We also find the multiplicative constant in the asymptotic expansion of the Freud multiple integral for β≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \ge 1$$\end{document}.
引用
收藏
页码:833 / 894
页数:61
相关论文
共 50 条
  • [31] Levy-Rosenzweig-Porter random matrix ensemble
    Biroli, G.
    Tarzia, M.
    PHYSICAL REVIEW B, 2021, 103 (10)
  • [32] Scaling of the reduced energy spectrum of random matrix ensemble
    Rao, Wen-Jia
    Chen, M. N.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (01):
  • [33] Circular Rosenzweig-Porter random matrix ensemble
    Buijsman, Wouter
    Bar Lev, Yevgeny
    SCIPOST PHYSICS, 2022, 12 (03):
  • [34] Energy level statistics of a critical random matrix ensemble
    Ndawana, ML
    Kravtsov, VE
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : 3639 - 3645
  • [35] Scaling of the reduced energy spectrum of random matrix ensemble
    Wen-Jia Rao
    M. N. Chen
    The European Physical Journal Plus, 136
  • [36] Universal shocks in the Wishart random-matrix ensemble
    Blaizot, Jean-Paul
    Nowak, Maciej A.
    Warchol, Piotr
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [37] Can ensemble method convert a 'weak' evolutionary algorithm to a 'strong' one?
    Zhou, Shude
    Sun, Zengqi
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION JOINTLY WITH INTERNATIONAL CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES & INTERNET COMMERCE, VOL 2, PROCEEDINGS, 2006, : 68 - +
  • [38] Boost a Weak Learner to a Strong Learner Using Ensemble System Approach
    Vaghela, Vimal B.
    Ganatra, Amit
    Thakkar, Amit
    2009 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE, VOLS 1-3, 2009, : 1432 - +
  • [39] Toda lattice representation for random matrix model with logarithmic confinement
    Sedrakyan, TA
    NUCLEAR PHYSICS B, 2005, 729 (03) : 526 - 541
  • [40] NONUNIVERSALITY IN RANDOM-MATRIX ENSEMBLES WITH SOFT LEVEL CONFINEMENT
    CANALI, CM
    WALLIN, M
    KRAVTSOV, VE
    PHYSICAL REVIEW B, 1995, 51 (05): : 2831 - 2834