Weak and Strong Confinement in the Freud Random Matrix Ensemble and Gap Probabilities

被引:0
|
作者
T. Claeys
I. Krasovsky
O. Minakov
机构
[1] UCLouvain,Institut de Recherche en Mathématique et Physique
[2] Imperial College London,Department of Mathematics
[3] Charles University,Department of Mathematical Analysis, Faculty of Mathematics and Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Freud ensemble of random matrices is the unitary invariant ensemble corresponding to the weight exp(-n|x|β),β>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp (-n |x|^{\beta }),\ \beta >0$$\end{document}, on the real line. We consider the local behaviour of eigenvalues near zero, which exhibits a transition in β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}. If β≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \ge 1$$\end{document}, it is described by the standard sine process. Below the critical value β=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta =1$$\end{document}, it is described by a process depending on the value of β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, and we determine the first two terms of the large gap probability in it. This so called weak confinement range 0<β<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\beta <1$$\end{document} corresponds to the Freud weight with the indeterminate moment problem. We also find the multiplicative constant in the asymptotic expansion of the Freud multiple integral for β≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \ge 1$$\end{document}.
引用
收藏
页码:833 / 894
页数:61
相关论文
共 50 条
  • [21] Strong and weak random walks on signed networks
    S. A. Babul
    Y. Tian
    R. Lambiotte
    npj Complexity, 2 (1):
  • [22] Eigenvalue confinement and spectral gap for random simplicial complexes
    Knowles, Antti
    Rosenthal, Ron
    RANDOM STRUCTURES & ALGORITHMS, 2017, 51 (03) : 506 - 537
  • [23] Strong/Weak Feature Recognition of Promoters Based on Position Weight Matrix and Ensemble Set-Valued Models
    Liu, Qie
    Liu, Min
    Wu, Wenfa
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2018, 25 (10) : 1152 - 1160
  • [24] Concept order parameter for random matrix ensemble
    Sokalski, K
    PHYSICS LETTERS A, 1997, 233 (4-6) : 343 - 346
  • [25] Normal random matrix ensemble as a growth problem
    Teodorescu, R
    Bettelheim, E
    Agam, O
    Zabrodin, A
    Wiegmann, P
    NUCLEAR PHYSICS B, 2005, 704 (03) : 407 - 444
  • [26] Concept of order parameter for random matrix ensemble
    Sokalski, K
    ACTA PHYSICA POLONICA B, 1997, 28 (07): : 1511 - 1514
  • [27] τ-function evaluation of gap probabilities in orthogonal and symplectic matrix ensembles
    Forrester, PJ
    Witte, NS
    NONLINEARITY, 2002, 15 (03) : 937 - 954
  • [28] Transport phenomena in nanotube quantum dots from strong to weak confinement
    Nygård, J
    Cobden, DH
    ELECTRONIC CORRELATIONS: FROM MESO- TO NANO-PHYSICS, 2001, : 455 - 458
  • [29] Strong versus weak coupling confinement in N=2 supersymmetric QCD
    Marshakov, A.
    Yung, A.
    NUCLEAR PHYSICS B, 2010, 831 (1-2) : 72 - 104
  • [30] LOCALIZATION AND SPECTRAL STATISTICS IN A BANDED RANDOM MATRIX ENSEMBLE
    WILKINSON, M
    FEINGOLD, M
    LEITNER, DM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (01): : 175 - 182