Simple Finite Element Numerical Simulation of Incompressible Flow Over Non-rectangular Domains and the Super-Convergence Analysis

被引:0
|
作者
Yunhua Xue
Cheng Wang
Jian-Guo Liu
机构
[1] Nankai University,School of Mathematics Sciences and LPMC
[2] University of Massachusetts Dartmouth,Department of Mathematics
[3] Duke University,Department of Physics and Department of Mathematics
来源
关键词
Incompressible flows; Boundary layer separation ; Structural bifurcation; Simple finite element method ; Super-convergence analysis; 65N30; 65M12; 35Q30; 76D05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we apply a simple finite element numerical scheme, proposed in an earlier work (Liu in Math Comput 70(234):579–593, 2000), to perform a high resolution numerical simulation of incompressible flow over an irregular domain and analyze its boundary layer separation. Compared with many classical finite element fluid solvers, this numerical method avoids a Stokes solver, and only two Poisson-like equations need to be solved at each time step/stage. In addition, its combination with the fully explicit fourth order Runge–Kutta (RK4) time discretization enables us to compute high Reynolds number flow in a very efficient way. As an application of this robust numerical solver, the dynamical mechanism of the boundary layer separation for a triangular cavity flow with Reynolds numbers Re=104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re=10^4$$\end{document} and Re=105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re=10^5$$\end{document}, including the precise values of bifurcation location and critical time, are reported in this paper. In addition, we provide a super-convergence analysis for the simple finite element numerical scheme, using linear elements over a uniform triangulation with right triangles.
引用
收藏
页码:1189 / 1216
页数:27
相关论文
共 25 条