Simple Finite Element Numerical Simulation of Incompressible Flow Over Non-rectangular Domains and the Super-Convergence Analysis

被引:0
|
作者
Yunhua Xue
Cheng Wang
Jian-Guo Liu
机构
[1] Nankai University,School of Mathematics Sciences and LPMC
[2] University of Massachusetts Dartmouth,Department of Mathematics
[3] Duke University,Department of Physics and Department of Mathematics
来源
关键词
Incompressible flows; Boundary layer separation ; Structural bifurcation; Simple finite element method ; Super-convergence analysis; 65N30; 65M12; 35Q30; 76D05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we apply a simple finite element numerical scheme, proposed in an earlier work (Liu in Math Comput 70(234):579–593, 2000), to perform a high resolution numerical simulation of incompressible flow over an irregular domain and analyze its boundary layer separation. Compared with many classical finite element fluid solvers, this numerical method avoids a Stokes solver, and only two Poisson-like equations need to be solved at each time step/stage. In addition, its combination with the fully explicit fourth order Runge–Kutta (RK4) time discretization enables us to compute high Reynolds number flow in a very efficient way. As an application of this robust numerical solver, the dynamical mechanism of the boundary layer separation for a triangular cavity flow with Reynolds numbers Re=104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re=10^4$$\end{document} and Re=105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re=10^5$$\end{document}, including the precise values of bifurcation location and critical time, are reported in this paper. In addition, we provide a super-convergence analysis for the simple finite element numerical scheme, using linear elements over a uniform triangulation with right triangles.
引用
收藏
页码:1189 / 1216
页数:27
相关论文
共 25 条
  • [1] Simple Finite Element Numerical Simulation of Incompressible Flow Over Non-rectangular Domains and the Super-Convergence Analysis
    Xue, Yunhua
    Wang, Cheng
    Liu, Jian-Guo
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (03) : 1189 - 1216
  • [2] Numerical simulation for thermohaline multiple equilibrant system in non-rectangular domains
    Zhan, JM
    Li, YS
    CHINESE PHYSICS, 2003, 12 (01): : 60 - 66
  • [3] Numerical simulation for rarefied hypersonic flows over non-rectangular deep cavities
    Jin, Xuhong
    Cheng, Xiaoli
    Wang, Qiang
    Wang, Bing
    PHYSICS OF FLUIDS, 2022, 34 (08)
  • [4] Numerical simulation of incompressible laminar flow over three-dimensional rectangular cavities
    Yao, H
    Cooper, RK
    Raghunathan, S
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2004, 126 (06): : 919 - 927
  • [5] Numerical simulation for the hypersonic flow structure and thermal environment of non-rectangular cavities in the rarefied slip regime
    Jin, Xuhong
    Yao, Yuzhu
    Cheng, Xiaoli
    Zhou, Jingyun
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2024, 39 (10):
  • [6] AN ANALYSIS OF THE LOW-FREQUENCY SOUND FIELD IN NON-RECTANGULAR ENCLOSURES USING THE FINITE-ELEMENT METHOD
    GEDDES, ER
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1984, 75 (02): : 637 - 637
  • [8] A numerical study of projection algorithms in the finite element simulation of three-dimensional viscous incompressible flow
    Goldberg, D
    Ruas, V
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1999, 30 (03) : 233 - 256
  • [9] Application of ETG finite element method in numerical simulation of incompressible viscous flow of low Reynolds number
    Wang, X.H.
    He, Z.Y.
    Harbin Jianzhu Daxue Xuebao/Journal of Harbin University of Civil Engineering and Architecture, 2001, 34 (05):
  • [10] Convergence analysis of a new multiscale finite element method with the P1/P0 element for the incompressible flow
    Wen, Juan
    Feng, Minfu
    He, Yinnian
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 258 : 13 - 25