DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning

被引:0
|
作者
Christof Angermueller
Heather J. Lee
Wolf Reik
Oliver Stegle
机构
[1] European Molecular Biology Laboratory,
[2] European Bioinformatics Institute,undefined
[3] Wellcome Genome Campus,undefined
[4] Epigenetics Programme,undefined
[5] Babraham Institute,undefined
[6] Wellcome Trust Sanger Institute,undefined
[7] Wellcome Genome Campus,undefined
来源
关键词
Deep learning; Artificial neural network; Machine learning; Single-cell genomics; DNA methylation; Epigenetics;
D O I
暂无
中图分类号
学科分类号
摘要
Recent technological advances have enabled DNA methylation to be assayed at single-cell resolution. However, current protocols are limited by incomplete CpG coverage and hence methods to predict missing methylation states are critical to enable genome-wide analyses. We report DeepCpG, a computational approach based on deep neural networks to predict methylation states in single cells. We evaluate DeepCpG on single-cell methylation data from five cell types generated using alternative sequencing protocols. DeepCpG yields substantially more accurate predictions than previous methods. Additionally, we show that the model parameters can be interpreted, thereby providing insights into how sequence composition affects methylation variability.
引用
收藏
相关论文
共 50 条
  • [41] Batch alignment of single-cell transcriptomics data using deep metric learning
    Xiaokang Yu
    Xinyi Xu
    Jingxiao Zhang
    Xiangjie Li
    Nature Communications, 14
  • [42] Single-cell classification, analysis, and its application using deep learning techniques
    Premkumar, R.
    Srinivasan, Arthi
    Devi, K. G. Harini
    Deepika, M.
    Gaayathry, E.
    Jadhav, Pramod
    Futane, Abhishek
    Narayanamurthy, Vigneswaran
    BIOSYSTEMS, 2024, 237
  • [43] Deep learning shapes single-cell data analysis
    Qin Ma
    Dong Xu
    Nature Reviews Molecular Cell Biology, 2022, 23 : 303 - 304
  • [44] Deep learning imputes DNA methylation states in single cells and enhances the detection of epigenetic alterations in schizophrenia
    Zhou, Jiyun
    Luo, Chongyuan
    Liu, Hanqing
    Heffel, Matthew G.
    Straub, Richard E.
    Kleinman, Joel E.
    Hyde, Thomas M.
    Ecker, Joseph R.
    Weinberger, Daniel R.
    Han, Shizhong
    CELL GENOMICS, 2025, 5 (03):
  • [45] scMethBank: a database for single-cell whole genome DNA methylation maps
    Zong, Wenting
    Kang, Hongen
    Xiong, Zhuang
    Ma, Yingke
    Jin, Tong
    Gong, Zheng
    Yi, Lizhi
    Zhang, Mochen
    Wu, Song
    Wang, Guoliang
    Bao, Yiming
    Li, Rujiao
    NUCLEIC ACIDS RESEARCH, 2022, 50 (D1) : D380 - D386
  • [46] Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data
    P. E. de Souza, Camila
    Andronescu, Mirela
    Masud, Tehmina
    Kabeer, Farhia
    Biele, Justina
    Laks, Emma
    Lai, Daniel
    Ye, Patricia
    Brimhall, Jazmine
    Wang, Beixi
    Su, Edmund
    Hui, Tony
    Cao, Qi
    Wong, Marcus
    Moksa, Michelle
    Moore, Richard A.
    Hirst, Martin
    Aparicio, Samuel
    Shah, Sohrab P.
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (09)
  • [47] scMET: Bayesian modeling of DNA methylation heterogeneity at single-cell resolution
    Kapourani, Chantriolnt-Andreas
    Argelaguet, Ricard
    Sanguinetti, Guido
    Vallejos, Catalina A.
    GENOME BIOLOGY, 2021, 22 (01)
  • [48] scMET: Bayesian modeling of DNA methylation heterogeneity at single-cell resolution
    Chantriolnt-Andreas Kapourani
    Ricard Argelaguet
    Guido Sanguinetti
    Catalina A. Vallejos
    Genome Biology, 22
  • [49] Prospects for Use of Single-Cell Sequencing to Assess DNA Methylation in Asthma
    Men, Shuai
    Yu, Yanyan
    MEDICAL SCIENCE MONITOR, 2020, 26
  • [50] DNA Methylation Markers for Pan-Cancer Prediction by Deep Learning
    Liu, Biao
    Liu, Yulu
    Pan, Xingxin
    Li, Mengyao
    Yang, Shuang
    Li, Shuai Cheng
    GENES, 2019, 10 (10)