DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning

被引:0
|
作者
Christof Angermueller
Heather J. Lee
Wolf Reik
Oliver Stegle
机构
[1] European Molecular Biology Laboratory,
[2] European Bioinformatics Institute,undefined
[3] Wellcome Genome Campus,undefined
[4] Epigenetics Programme,undefined
[5] Babraham Institute,undefined
[6] Wellcome Trust Sanger Institute,undefined
[7] Wellcome Genome Campus,undefined
来源
关键词
Deep learning; Artificial neural network; Machine learning; Single-cell genomics; DNA methylation; Epigenetics;
D O I
暂无
中图分类号
学科分类号
摘要
Recent technological advances have enabled DNA methylation to be assayed at single-cell resolution. However, current protocols are limited by incomplete CpG coverage and hence methods to predict missing methylation states are critical to enable genome-wide analyses. We report DeepCpG, a computational approach based on deep neural networks to predict methylation states in single cells. We evaluate DeepCpG on single-cell methylation data from five cell types generated using alternative sequencing protocols. DeepCpG yields substantially more accurate predictions than previous methods. Additionally, we show that the model parameters can be interpreted, thereby providing insights into how sequence composition affects methylation variability.
引用
收藏
相关论文
共 50 条
  • [31] DNA methylation atlas of the mouse brain at single-cell resolution
    Liu, Hanqing
    Zhou, Jingtian
    Tian, Wei
    Luo, Chongyuan
    Bartlett, Anna
    Aldridge, Andrew
    Lucero, Jacinta
    Osteen, Julia K.
    Nery, Joseph R.
    Chen, Huaming
    Rivkin, Angeline
    Castanon, Rosa G.
    Clock, Ben
    Li, Yang Eric
    Hou, Xiaomeng
    Poirion, Olivier B.
    Preissl, Sebastian
    Pinto-Duarte, Antonio
    O'Connor, Carolyn
    Boggeman, Lara
    Fitzpatrick, Conor
    Nunn, Michael
    Mukamel, Eran A.
    Zhang, Zhuzhu
    Callaway, Edward M.
    Ren, Bing
    Dixon, Jesse R.
    Behrens, M. Margarita
    Ecker, Joseph R.
    NATURE, 2021, 598 (7879) : 120 - +
  • [32] DNA methylation atlas of the mouse brain at single-cell resolution
    Hanqing Liu
    Jingtian Zhou
    Wei Tian
    Chongyuan Luo
    Anna Bartlett
    Andrew Aldridge
    Jacinta Lucero
    Julia K. Osteen
    Joseph R. Nery
    Huaming Chen
    Angeline Rivkin
    Rosa G. Castanon
    Ben Clock
    Yang Eric Li
    Xiaomeng Hou
    Olivier B. Poirion
    Sebastian Preissl
    Antonio Pinto-Duarte
    Carolyn O’Connor
    Lara Boggeman
    Conor Fitzpatrick
    Michael Nunn
    Eran A. Mukamel
    Zhuzhu Zhang
    Edward M. Callaway
    Bing Ren
    Jesse R. Dixon
    M. Margarita Behrens
    Joseph R. Ecker
    Nature, 2021, 598 : 120 - 128
  • [33] Accurate integration of single-cell DNA and RNA for analyzing intratumor heterogeneity using MaCroDNA
    Mohammadamin Edrisi
    Xiru Huang
    Huw A. Ogilvie
    Luay Nakhleh
    Nature Communications, 14
  • [34] Homogeneous Space Construction and Projection for Single-Cell Expression Prediction Based on Deep Learning
    Yeh, Chia-Hung
    Chen, Ze-Guang
    Liou, Cheng-Yue
    Chen, Mei-Juan
    BIOENGINEERING-BASEL, 2023, 10 (09):
  • [35] Interpretable single-cell transcription factor prediction based on deep learning with attention mechanism
    Gong, Meiqin
    He, Yuchen
    Wang, Maocheng
    Zhang, Yongqing
    Ding, Chunli
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2023, 106
  • [36] Accurate integration of single-cell DNA and RNA for analyzing intratumor heterogeneity using MaCroDNA
    Edrisi, Mohammadamin
    Huang, Xiru
    Ogilvie, Huw A.
    Nakhleh, Luay
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [37] A Hybrid Deep Neural Network for Robust Single-Cell Genome-Wide DNA Methylation Detection
    Li, Russell A.
    Liu, Zhandong
    12TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS (ACM-BCB 2021), 2021,
  • [38] scHiMe: predicting single-cell DNA methylation levels based on single-cell Hi-C data
    Zhu, Hao
    Liu, Tong
    Wang, Zheng
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)
  • [39] Accurate Single-Cell Clustering through Ensemble Similarity Learning
    Jeong, Hyundoo
    Shin, Sungtae
    Yeom, Hong-Gi
    GENES, 2021, 12 (11)
  • [40] Batch alignment of single-cell transcriptomics data using deep metric learning
    Yu, Xiaokang
    Xu, Xinyi
    Zhang, Jingxiao
    Li, Xiangjie
    NATURE COMMUNICATIONS, 2023, 14 (01)