Sums of singular series and primes in short intervals in algebraic number fields

被引:0
|
作者
Vivian Kuperberg
Brad Rodgers
Edva Roditty-Gershon
机构
[1] Stanford University,Department of Mathematics
[2] Queen’s University,Department of Mathematics and Statistics
[3] H.I.T. - Holon Institute of Technology,Department of Applied Mathematics
来源
The Ramanujan Journal | 2022年 / 58卷
关键词
Primes; Short intervals; Ramanujan sums; Singular series; Number fields; 11N05; 11R47;
D O I
暂无
中图分类号
学科分类号
摘要
Gross and Smith have put forward generalizations of Hardy–Littlewood twin prime conjectures for algebraic number fields. We estimate the behaviour of sums of a singular series that arises in these conjectures, up to lower-order terms. More exactly, where S(η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {S}(\eta )$$\end{document} is the singular series, we find asymptotic formulas for smoothed sums of S(η)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {S}(\eta )-1$$\end{document}. Based upon Gross and Smith’s conjectures, we use our result to suggest that for large enough ‘short intervals’ in an algebraic number field K, the variance of counts of prime elements in a random short interval deviates from a Cramér model prediction by a universal factor, independent of K. The conjecture over number fields generalizes a classical conjecture of Goldston and Montgomery over the integers. Numerical data are provided supporting the conjecture.
引用
收藏
页码:291 / 317
页数:26
相关论文
共 50 条
  • [1] Sums of singular series and primes in short intervals in algebraic number fields
    Kuperberg, Vivian
    Rodgers, Brad
    Roditty-Gershon, Edva
    RAMANUJAN JOURNAL, 2022, 58 (02): : 291 - 317
  • [2] Sums of primes and squares of primes in short intervals
    Kumchev, Angel V.
    Liu, J. Y.
    MONATSHEFTE FUR MATHEMATIK, 2009, 157 (04): : 335 - 363
  • [3] Sums of primes and squares of primes in short intervals
    Angel V. Kumchev
    J. Y. Liu
    Monatshefte für Mathematik, 2009, 157 : 335 - 363
  • [4] Sums of cubes of primes in short intervals
    Liu, Zhixin
    Sun, Qingfeng
    RAMANUJAN JOURNAL, 2012, 28 (03): : 309 - 321
  • [5] Sums of cubes of primes in short intervals
    Zhixin Liu
    Qingfeng Sun
    The Ramanujan Journal, 2012, 28 : 309 - 321
  • [6] On exponential sums over primes in short intervals
    Lue, Guangshi
    Lao, Huixue
    MONATSHEFTE FUR MATHEMATIK, 2007, 151 (02): : 153 - 164
  • [7] Exponential sums over primes in short intervals
    Jianya Liu
    Guangshi Lü
    Tao Zhan
    Science in China Series A, 2006, 49 : 611 - 619
  • [8] Exponential sums over primes in short intervals
    Liu Jianya
    Lu Guangshi
    Zhan Tao
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (05): : 611 - 619
  • [9] Exponential sums over primes in short intervals
    LIU Jianya
    Science China Mathematics, 2006, (05) : 611 - 619
  • [10] Exponential sums over primes in short intervals
    Huang, Bingrong
    Wang, Zhiwei
    JOURNAL OF NUMBER THEORY, 2015, 148 : 204 - 219