Exponential sums over primes in short intervals

被引:0
|
作者
Jianya Liu
Guangshi Lü
Tao Zhan
机构
[1] Shandong University,Department of Mathematics
来源
Science in China Series A | 2006年 / 49卷
关键词
exponential sums over primes; circle method; Waring-Goldbach problems;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we establish one new estimate on exponential sums over primes in short intervals. As an application of this result, we sharpen Hua’s result by proving that each sufficiently large integer N congruent to 5 modulo 24 can be written as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$N = p_1^2 + p_2^2 + p_3^2 + p_4^2 + p_5^2 , with |p_j - \sqrt {N/5} | \leqslant U = N^{\frac{1}{2} - \frac{1}{{20}} + \varepsilon } $$ \end{document}, where pj are primes. This result is as good as what one can obtain from the generalized Riemann hypothesis.
引用
收藏
页码:611 / 619
页数:8
相关论文
共 50 条