On exponential sums over primes in short intervals

被引:0
|
作者
Guangshi Lü
Huixue Lao
机构
[1] Shandong University,
[2] Shandong Normal University,undefined
来源
关键词
2000 Mathematics Subject Classification: 11P32, 11P05, 11N36, 11P55; Key words: Exponential sums over primes, hybrid estimate for Dirichlet polynomials, zero-density estimates of Dirichlet ; -functions over short intervals;
D O I
暂无
中图分类号
学科分类号
摘要
Let Λ(n) be the von Mangoldt function, x real and y small compared with x. This paper gives a non-trivial estimate on the exponential sum over primes in short intervals \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_2(x,y;{\alpha})=\sum_{x < n \le x+y}\Lambda(n)e(n^2 {\alpha})$$\end{document} for all α ∈ [0,1] whenever \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x^{\frac{2}{3}+{\varepsilon}}\le y \le x$\end{document}. This result is as good as what was previously derived from the Generalized Riemann Hypothesis.
引用
收藏
页码:153 / 164
页数:11
相关论文
共 50 条
  • [1] On exponential sums over primes in short intervals
    Lue, Guangshi
    Lao, Huixue
    [J]. MONATSHEFTE FUR MATHEMATIK, 2007, 151 (02): : 153 - 164
  • [2] Exponential sums over primes in short intervals
    Jianya Liu
    Guangshi Lü
    Tao Zhan
    [J]. Science in China Series A, 2006, 49 : 611 - 619
  • [3] Exponential sums over primes in short intervals
    Liu Jianya
    Lu Guangshi
    Zhan Tao
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (05): : 611 - 619
  • [4] Exponential sums over primes in short intervals
    Huang, Bingrong
    Wang, Zhiwei
    [J]. JOURNAL OF NUMBER THEORY, 2015, 148 : 204 - 219
  • [5] Exponential sums over primes in short intervals
    LIU Jianya
    [J]. Science China Mathematics, 2006, (05) : 611 - 619
  • [6] EXPONENTIAL-SUMS OVER PRIMES IN SHORT INTERVALS
    BALOG, A
    PERELLI, A
    [J]. ACTA MATHEMATICA HUNGARICA, 1986, 48 (1-2) : 223 - 228
  • [7] Estimation of Exponential Sums over Primes in Short Intervals I
    Jianya Liu
    Tao Zhan
    [J]. Monatshefte für Mathematik, 1999, 127 : 27 - 41
  • [8] Estimation of exponential sums over primes in short intervals I
    Liu, JY
    Zhan, T
    [J]. MONATSHEFTE FUR MATHEMATIK, 1999, 127 (01): : 27 - 41
  • [9] Pair correlation of zeros, primes in short intervals and exponential sums over primes
    Languasco, A
    Perelli, A
    [J]. JOURNAL OF NUMBER THEORY, 2000, 84 (02) : 292 - 304
  • [10] EXPLICIT RELATIONS BETWEEN PRIMES IN SHORT INTERVALS AND EXPONENTIAL SUMS OVER PRIMES
    Languasco, Alessandro
    Zaccagnini, Alessandro
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2014, 51 (02) : 379 - 391