Sums of primes and squares of primes in short intervals

被引:0
|
作者
Angel V. Kumchev
J. Y. Liu
机构
[1] Towson University,Department of Mathematics
[2] Shandong University,Department of Mathematics
来源
关键词
Waring–Goldbach problem; Exceptional sets; Distribution of primes; Sieve methods; Exponential sums; 11P32; 11L20; 11N36;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal H_2}$$\end{document} denote the set of even integers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \not\equiv 1 \pmod 3}$$\end{document} . We prove that when H ≥ X0.33, almost all integers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \in \mathcal H_2 \cap (X, X + H]}$$\end{document} can be represented as the sum of a prime and the square of a prime. We also prove a similar result for sums of three squares of primes.
引用
收藏
页码:335 / 363
页数:28
相关论文
共 50 条
  • [1] Sums of primes and squares of primes in short intervals
    Kumchev, Angel V.
    Liu, J. Y.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2009, 157 (04): : 335 - 363
  • [2] Sums of cubes of primes in short intervals
    Liu, Zhixin
    Sun, Qingfeng
    [J]. RAMANUJAN JOURNAL, 2012, 28 (03): : 309 - 321
  • [3] Sums of cubes of primes in short intervals
    Zhixin Liu
    Qingfeng Sun
    [J]. The Ramanujan Journal, 2012, 28 : 309 - 321
  • [4] On sums of Hecke eigenvalue squares over primes in very short intervals
    Kim, Jiseong
    [J]. ACTA ARITHMETICA, 2022, 205 (04) : 309 - 321
  • [5] SUMS OF ONE PRIME POWER AND TWO SQUARES OF PRIMES IN SHORT INTERVALS
    Languasco, Alessandro
    Zaccagnini, Alessandro
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (01) : 213 - 224
  • [6] On exponential sums over primes in short intervals
    Lue, Guangshi
    Lao, Huixue
    [J]. MONATSHEFTE FUR MATHEMATIK, 2007, 151 (02): : 153 - 164
  • [7] Exponential sums over primes in short intervals
    LIU Jianya
    [J]. Science China Mathematics, 2006, (05) : 611 - 619
  • [8] Exponential sums over primes in short intervals
    Huang, Bingrong
    Wang, Zhiwei
    [J]. JOURNAL OF NUMBER THEORY, 2015, 148 : 204 - 219
  • [9] Exponential sums over primes in short intervals
    Liu Jianya
    Lu Guangshi
    Zhan Tao
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (05): : 611 - 619
  • [10] Exponential sums over primes in short intervals
    Jianya Liu
    Guangshi Lü
    Tao Zhan
    [J]. Science in China Series A, 2006, 49 : 611 - 619