Existence, Nonexistence and Multiplicity Results of a Chern-Simons-Schrödinger System

被引:0
|
作者
Aliang Xia
机构
[1] Jiangxi Normal University,Department of Mathematics
来源
关键词
Chern-Simons-Schrödinger systems; Nehari manifold; Fibering method; Variational methods; 35J50; 35J10; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
We study the existence, nonexistence and multiplicity of solutions to Chern-Simons-Schrödinger system {−Δu+u+λ(h2(|x|)|x|2+∫|x|+∞h(s)su2(s)ds)u=|u|p−2u,x∈R2,u∈Hr1(R2),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \left \{ \textstyle\begin{array}{l@{\quad }l} -\Delta u+u+\lambda (\frac{h^{2}(|x|)}{|x|^{2}}+\int _{|x|}^{+ \infty }\frac{h(s)}{s}u^{2}(s)ds )u=|u|^{p-2}u,\quad x\in \mathbb{R}^{2}, \\ u\in H^{1}_{r}(\mathbb{R}^{2}), \end{array}\displaystyle \right . \end{aligned}$$ \end{document} where λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda >0$\end{document} is a parameter, p∈(2,4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\in (2,4)$\end{document} and h(s)=12∫0sru2(r)dr.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ h(s)=\frac{1}{2} \int _{0}^{s}ru^{2}(r)dr. $$\end{document} We prove that the system has no solutions for λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda $\end{document} large and has two radial solutions for λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda $\end{document} small by studying the decomposition of the Nehari manifold and adapting the fibering method. We also give the qualitative properties about the energy of the solutions and a variational characterization of these extremals values of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda $\end{document}. Our results improve some results in Pomponio and Ruiz (J. Eur. Math. Soc. 17:1463–1486, 2015).
引用
收藏
页码:147 / 159
页数:12
相关论文
共 50 条
  • [11] On the Chern-Simons-Schrödinger Equation with Critical Exponential Growth
    Si Tong Chen
    Xian Hua Tang
    Shuai Yuan
    Acta Mathematica Sinica, English Series, 2021, 37 : 1875 - 1895
  • [12] Normalized solutions for Chern-Simons-Schrödinger system with critical exponential growth
    Huang, Xianjiu
    Feng, Shenghao
    Chen, Jianhua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (02)
  • [13] Adiabatic Limit and the Slow Motion of Vortices in a Chern-Simons-Schrödinger System
    Sophia Demoulini
    David Stuart
    Communications in Mathematical Physics, 2009, 290 : 597 - 632
  • [14] Normalized solutions to the Chern-Simons-Schrödinger system under the nonlinear combined effect
    Shuai Yao
    Haibo Chen
    Juntao Sun
    Science China Mathematics, 2023, 66 : 2057 - 2080
  • [15] Normalized solutions to the Chern-Simons-Schr?dinger system under the nonlinear combined effect
    Shuai Yao
    Haibo Chen
    Juntao Sun
    ScienceChina(Mathematics), 2023, 66 (09) : 2057 - 2080
  • [16] The Existence and Concentration of Ground State Solutions for Chern-Simons-schrödinger Systems with a Steep Well Potential
    Jinlan Tan
    Yongyong Li
    Chunlei Tang
    Acta Mathematica Scientia, 2022, 42 : 1125 - 1140
  • [17] THE EXISTENCE AND CONCENTRATION OF GROUND STATE SOLUTIONS FOR CHERN-SIMONS-SCHR?DINGER SYSTEMS WITH A STEEP WELL POTENTIAL
    谭金岚
    李勇勇
    唐春雷
    Acta Mathematica Scientia, 2022, 42 (03) : 1125 - 1140
  • [18] Nodal solutions for a zero-mass Chern-Simons-Schrödinger equation
    Deng, Yinbin
    Liu, Chenchen
    Yang, Xian
    ADVANCES IN NONLINEAR ANALYSIS, 2024, 13 (01)
  • [19] Existence and Concentration of Solutions for the Chern–Simons–Schrödinger System with General Nonlinearity
    Xianhua Tang
    Jian Zhang
    Wen Zhang
    Results in Mathematics, 2017, 71 : 643 - 655
  • [20] 含扰动项的Chern-Simons-Schr?dinger方程的多解
    元浩
    翁立夫
    周焕松
    中国科学:数学, 2023, 53 (09) : 1213 - 1226