含扰动项的Chern-Simons-Schr?dinger方程的多解

被引:0
|
作者
元浩
翁立夫
周焕松
机构
[1] 武汉理工大学数学科学研究中心
关键词
椭圆型偏微分方程; 临界点; 山路引理; Chern-Simons-Schr?dinger方程; Ekeland变分引理;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
本文研究二维空间R2上一类含有Chern-Simons型非局部项且具有p-1(2 2范数小于某个可显式给出的确定值时,本文对于任意的p∈(2,∞)建立这类方程解的存在性或非存在性,并且对于适当范围内的p还得到这类方程同时具有正能量解和负能量解.
引用
收藏
页码:1213 / 1226
页数:14
相关论文
共 14 条
  • [1] Chen Haibo,Xie Weihong.Existence and multiplicity of normalized solutions for the nonlinear Chern–Simons–Schrödinger equations[J].Annales Academiae Scientiarum Fennicae Mathematica,2020
  • [2] Zhisu Liu,Zigen Ouyang,Jianjun Zhang.Existence and multiplicity of sign-changing standing waves for a gauged nonlinear Schrödinger equation in[J].Nonlinearity,2019
  • [3] Yinbin Deng,Shuangjie Peng,Wei Shuai.Nodal standing waves for a gauged nonlinear Schrödinger equation in R 2[J].Journal of Differential Equations,2018
  • [4] Gongbao Li,Xiao Luo,Wei Shuai.Sign-changing solutions to a gauged nonlinear Schrödinger equation[J].Journal of Mathematical Analysis and Applications,2017
  • [5] Chao Ji,Fei Fang.Standing waves for the Chern–Simons–Schrödinger equation with critical exponential growth[J].Journal of Mathematical Analysis and Applications,2017
  • [6] Li Gongbao,Luo Xiao.Normalized solutions for the Chern–Simons–Schrödinger equation in R^2[J].Annales Academiae Scientiarum Fennicae Mathematica,2017
  • [7] Yongsheng Jiang,Alessio Pomponio,David Ruiz.Standing waves for a gauged nonlinear Schrödinger equation with a vortex point[J].Communications in Contemporary Mathematics,2016
  • [8] Yongsheng Jiang,Zhengping Wang,Huan-Song Zhou.Multiple solutions for a nonhomogeneous Schrödinger–Maxwell system in R 3[J].Nonlinear Analysis,2013
  • [9] Jaeyoung Byeon,Hyungjin Huh,Jinmyoung Seok.Standing waves of nonlinear Schrödinger equations with the gauge field[J].Journal of Functional Analysis,2012
  • [10] Hyungjin Huh.Standing waves of the Schrödinger equation coupled with the Chern-Simons gauge field[J].Journal of Mathematical Physics,2012