Condensation and metastability in the 2D Potts model

被引:0
|
作者
J.L. Meunier
A. Morel
机构
[1] Institut Non Linéaire de Nice-Sophia Antipolis,
[2] 1361 Route des Lucioles,undefined
[3] 06560 Valbonne,undefined
[4] France,undefined
[5] Service de Physique Théorique,undefined
[6] CEA Saclay,undefined
[7] 91191 Gif-sur-Yvette Cedex,undefined
[8] France,undefined
关键词
PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) - 05.70.Jk Critical point phenomena - 64.60.My Metastable phases;
D O I
暂无
中图分类号
学科分类号
摘要
For the first order transition of the Ising model below \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, Isakov has proven that the free energy possesses an essential singularity in the applied field. Such a singularity in the control parameter, anticipated by condensation theory, is believed to be a generic feature of first order transitions, but too weak to be observable. We study these issues for the temperature driven transition of the q states 2D Potts model at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Adapting the droplet model to this case, we relate its parameters to the critical properties at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} and confront the free energy to the many informations brought by previous works. The essential singularity predicted at the transition temperature leads to observable effects in numerical data. On a finite lattice, a metastability domain of temperatures is identified, which shrinks to zero in the thermodynamical limit.
引用
收藏
页码:341 / 352
页数:11
相关论文
共 50 条
  • [31] Energy Landscape and Metastability of Curie-Weiss-Potts Model
    Lee, Jungkyoung
    JOURNAL OF STATISTICAL PHYSICS, 2022, 187 (01)
  • [32] Metastability in the Potts model: exact results in the large q limit
    Mazzarisi, Onofrio
    Corberi, Federico
    Cugliandolo, Leticia F.
    Picco, Marco
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (06):
  • [33] Bulk limit of superconducting condensation energy in 2D Hubbard model
    Yamaji, K
    Yanagisawa, T
    Koike, S
    PHYSICA B, 2000, 284 : 415 - 416
  • [34] Rounding of phase transition in the 2D 8-state random bond Potts model
    Çelik, T
    Yasar, F
    Gündüç, Y
    COMPUTER PHYSICS COMMUNICATIONS, 1999, 121 : 194 - 196
  • [35] Modelling texture dependent grain growth by 2D Potts model simulations: A detailed analysis
    Zoellner, D.
    Zlotnikov, I.
    COMPUTATIONAL MATERIALS SCIENCE, 2018, 155 : 180 - 196
  • [36] Monte Carlo study of 8-state Potts model on 2D random lattices
    Janke, W
    Villanova, R
    NUCLEAR PHYSICS B, 1996, : 641 - 644
  • [37] Evolution of 2D Potts model grain microstructures from an initial Hillert size distribution
    Battaile, CC
    Holm, EA
    GRAIN GROWTH IN POLYCRYSTALLINE MATERIALS III, 1998, : 119 - 124
  • [38] Monte Carlo investigation of the phase transition in the 2D Potts model with open boundary conditions
    Johansson, Jonas
    PHYSICS LETTERS A, 2008, 372 (42) : 6301 - 6304
  • [39] Metastability of the three-state Potts model with asymmetrical external field
    Ahn, Jeonghyun
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 176
  • [40] Parameter-dependences of superconducting condensation energy of 2D Hubbard model
    Yamaji, K
    Koike, S
    Miyazaki, M
    Yanagisawa, T
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2003, 392 : 229 - 233