Condensation and metastability in the 2D Potts model

被引:0
|
作者
J.L. Meunier
A. Morel
机构
[1] Institut Non Linéaire de Nice-Sophia Antipolis,
[2] 1361 Route des Lucioles,undefined
[3] 06560 Valbonne,undefined
[4] France,undefined
[5] Service de Physique Théorique,undefined
[6] CEA Saclay,undefined
[7] 91191 Gif-sur-Yvette Cedex,undefined
[8] France,undefined
关键词
PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) - 05.70.Jk Critical point phenomena - 64.60.My Metastable phases;
D O I
暂无
中图分类号
学科分类号
摘要
For the first order transition of the Ising model below \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, Isakov has proven that the free energy possesses an essential singularity in the applied field. Such a singularity in the control parameter, anticipated by condensation theory, is believed to be a generic feature of first order transitions, but too weak to be observable. We study these issues for the temperature driven transition of the q states 2D Potts model at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Adapting the droplet model to this case, we relate its parameters to the critical properties at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} and confront the free energy to the many informations brought by previous works. The essential singularity predicted at the transition temperature leads to observable effects in numerical data. On a finite lattice, a metastability domain of temperatures is identified, which shrinks to zero in the thermodynamical limit.
引用
收藏
页码:341 / 352
页数:11
相关论文
共 50 条
  • [21] The effects of the distribution of bimodal bonds on phase transition in 2D Potts model
    Yasar, F
    Gündüç, Y
    Çelik, T
    PHYSICA A, 1999, 274 (3-4): : 537 - 544
  • [22] Metastability in 2D self-assembling systems
    Medhekar, N. V.
    Shenoy, V. B.
    Hannon, J. B.
    Tromp, R. M.
    PHYSICAL REVIEW LETTERS, 2007, 99 (15)
  • [23] Phase Transitions and Critical Phenomena in the 2D Potts Impurity Model on a Square Lattice
    A. K. Murtazaev
    A. B. Babaev
    G. Ya. Ataeva
    M. A. Magomedov
    Journal of Experimental and Theoretical Physics, 2022, 135 : 347 - 353
  • [24] Phase Transitions and Critical Phenomena in the 2D Potts Impurity Model on a Square Lattice
    Murtazaev, A. K.
    Babaev, A. B.
    Ataeva, G. Ya
    Magomedov, M. A.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2022, 135 (03) : 347 - 353
  • [25] BIFURCATIONS AND CONVERGENCE OF THE MARTINELLI-PARISI EXPANSION IN THE 2D POTTS-MODEL
    CARACCIOLO, S
    PATARNELLO, S
    NUCLEAR PHYSICS B, 1985, 251 (01) : 50 - 60
  • [26] Study of autocorrelation times in 2D potts model under quenched bond randomness
    Yasar, F
    Gündüc, Y
    Çelik, T
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2000, 11 (04): : 707 - 712
  • [27] THE STUDY OF PHASE TRANSITION BY PERIODIC DISTRIBUTION OF BIMODAL BONDS IN 2D POTTS MODEL
    Yasar, Fatih
    Dilaver, Mehmet
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2009, 20 (02): : 223 - 236
  • [28] The number of link and cluster states: the core of the 2D q state Potts model
    Hove, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (50): : 10893 - 10904
  • [29] Phase transition in the 2D random potts model in the large-q limit
    Angleás d'Auriac, J.-Ch.
    Igloái, F.
    Physical Review Letters, 2003, 90 (19) : 1 - 190601
  • [30] Metastability of the three-state Potts model with general interactions
    Bet, Gianmarco
    Gallo, Anna
    Kim, Seonwoo
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28