Braided Tensor Categories of Admissible Modules for Affine Lie Algebras

被引:0
|
作者
Thomas Creutzig
Yi-Zhi Huang
Jinwei Yang
机构
[1] University of Alberta,Department of Mathematical and Statistical Sciences
[2] Rutgers University,Department of Mathematics
[3] Yale University,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Using the tensor category theory developed by Lepowsky, Zhang and the second author, we construct a braided tensor category structure with a twist on a semisimple category of modules for an affine Lie algebra at an admissible level. We conjecture that this braided tensor category is rigid and thus is a ribbon category. We also give conjectures on the modularity of this category and on the equivalence with a suitable quantum group tensor category. In the special case that the affine Lie algebra is sl^2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widehat{\mathfrak{sl}}_2}$$\end{document}, we prove the rigidity and modularity conjectures.
引用
收藏
页码:827 / 854
页数:27
相关论文
共 50 条
  • [31] Annihilating fields of standard modules for affine Lie algebras
    Borcea, J
    MATHEMATISCHE ZEITSCHRIFT, 2001, 237 (02) : 301 - 319
  • [32] String Functions for Affine Lie Algebras Integrable Modules
    Kulish, Petr
    Lyakhovsky, Vladimir
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2008, 4
  • [33] Universal central extensions of braided crossed modules of Lie algebras
    Fernandez-Farina, Alejandro
    Ladra, Manuel
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (04): : 1013 - 1028
  • [34] A CLASS OF NONSTANDARD MODULES FOR AFFINE LIE-ALGEBRAS
    WALLACH, NR
    MATHEMATISCHE ZEITSCHRIFT, 1987, 196 (03) : 303 - 313
  • [35] Annihilating fields of standard modules for affine Lie algebras
    Julius Borcea
    Mathematische Zeitschrift, 2001, 237 : 301 - 319
  • [36] Parafermionic bases of standard modules for affine Lie algebras
    Marijana Butorac
    Slaven Kožić
    Mirko Primc
    Mathematische Zeitschrift, 2021, 298 : 1003 - 1032
  • [37] IMAGINARY VERMA MODULES FOR AFFINE LIE-ALGEBRAS
    FUTORNY, VM
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1994, 37 (02): : 213 - 218
  • [38] New irreducible modules for Heisenberg and affine Lie algebras
    Bekkert, Viktor
    Benkart, Georgia
    Futorny, Vyacheslav
    Kashuba, Iryna
    JOURNAL OF ALGEBRA, 2013, 373 : 284 - 298
  • [39] Parafermionic bases of standard modules for affine Lie algebras
    Butorac, Marijana
    Kozic, Slaven
    Primc, Mirko
    MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (3-4) : 1003 - 1032
  • [40] Crystals for Demazure modules of classical affine Lie algebras
    Kaniba, A
    Misra, KC
    Okado, M
    Takagi, T
    Uchiyama, J
    JOURNAL OF ALGEBRA, 1998, 208 (01) : 185 - 215