Braided Tensor Categories of Admissible Modules for Affine Lie Algebras

被引:0
|
作者
Thomas Creutzig
Yi-Zhi Huang
Jinwei Yang
机构
[1] University of Alberta,Department of Mathematical and Statistical Sciences
[2] Rutgers University,Department of Mathematics
[3] Yale University,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Using the tensor category theory developed by Lepowsky, Zhang and the second author, we construct a braided tensor category structure with a twist on a semisimple category of modules for an affine Lie algebra at an admissible level. We conjecture that this braided tensor category is rigid and thus is a ribbon category. We also give conjectures on the modularity of this category and on the equivalence with a suitable quantum group tensor category. In the special case that the affine Lie algebra is sl^2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widehat{\mathfrak{sl}}_2}$$\end{document}, we prove the rigidity and modularity conjectures.
引用
下载
收藏
页码:827 / 854
页数:27
相关论文
共 50 条