On the Stable Eigenvalues of Perturbed Anharmonic Oscillators in Dimension Two

被引:0
|
作者
Dario Bambusi
Beatrice Langella
Marc Rouveyrol
机构
[1] Università degli Studi di Milano,Dipartimento di Matematica
[2] International School for Advanced Studies (SISSA),undefined
[3] DER de mathématiques,undefined
[4] ENS Paris-Saclay,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the asymptotic behavior of the spectrum of a quantum system which is a perturbation of a spherically symmetric anharmonic oscillator in dimension 2. We prove that a large part of its eigenvalues can be obtained by Bohr–Sommerfeld quantization rule applied to the normal form Hamiltonian and also admits an asymptotic expansion at infinity. The proof is based on the generalization to the present context of the normal form approach developed in Bambusi et al. (Commun Part Differ Equ 45:1–18, 2020) (see also Parnovski and Sobolev in Invent Math 181(3):467–540, 2010) for the particular case of Td\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}^d$$\end{document}.
引用
收藏
页码:309 / 348
页数:39
相关论文
共 50 条
  • [41] Scheifele two-step methods for perturbed oscillators
    Van de Vyver, Hans
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 224 (01) : 415 - 432
  • [42] EIGENVALUES OF ANHARMONIC-OSCILLATOR
    FUNG, YT
    CHAN, YW
    WAN, WY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (05): : 829 - 832
  • [43] EIGENVALUES OF AN ANHARMONIC-OSCILLATOR
    KESARWANI, RN
    VARSHNI, YP
    JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (09) : 1983 - 1989
  • [44] ON EIGENVALUES OF PERTURBED OPERATORS
    STENGER, W
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (03): : 567 - &
  • [45] ON FINITENESS OF PERTURBED EIGENVALUES
    KONNO, R
    KURODA, ST
    JOURNAL OF THE FACULTY OF SCIENCE UNIVERSITY OF TOKYO SECTION 1-MATHEMATICS ASTRONOMY PHYSICS CHEMISTRY, 1966, 13 : 55 - &
  • [46] Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators
    Fang Ci-Jun
    Liu Xian-Bin
    CHINESE PHYSICS LETTERS, 2012, 29 (05)
  • [47] Two stages of motion of anharmonic oscillators modeling fast particles in crystals
    Yu. A. Kashlev
    Theoretical and Mathematical Physics, 2011, 167 : 506 - 516
  • [48] TWO STAGES OF MOTION OF ANHARMONIC OSCILLATORS MODELING FAST PARTICLES IN CRYSTALS
    Kashlev, Yu. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2011, 167 (01) : 506 - 516
  • [49] Quantum entanglement of anharmonic oscillators
    Joshi, Chaitanya
    Jonson, Mats
    Andersson, Erika
    Ohberg, Patrik
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (24)
  • [50] VIBRATIONAL TRANSITIONS IN ANHARMONIC OSCILLATORS
    SHIN, HK
    JOURNAL OF PHYSICAL CHEMISTRY, 1973, 77 (22): : 2657 - 2661