On the Stable Eigenvalues of Perturbed Anharmonic Oscillators in Dimension Two

被引:0
|
作者
Dario Bambusi
Beatrice Langella
Marc Rouveyrol
机构
[1] Università degli Studi di Milano,Dipartimento di Matematica
[2] International School for Advanced Studies (SISSA),undefined
[3] DER de mathématiques,undefined
[4] ENS Paris-Saclay,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the asymptotic behavior of the spectrum of a quantum system which is a perturbation of a spherically symmetric anharmonic oscillator in dimension 2. We prove that a large part of its eigenvalues can be obtained by Bohr–Sommerfeld quantization rule applied to the normal form Hamiltonian and also admits an asymptotic expansion at infinity. The proof is based on the generalization to the present context of the normal form approach developed in Bambusi et al. (Commun Part Differ Equ 45:1–18, 2020) (see also Parnovski and Sobolev in Invent Math 181(3):467–540, 2010) for the particular case of Td\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}^d$$\end{document}.
引用
收藏
页码:309 / 348
页数:39
相关论文
共 50 条
  • [31] Computing energy eigenvalues of anharmonic oscillators using the double exponential Sinc collocation method
    Gaudreau, Philippe J.
    Slevinsky, Richard M.
    Safouhi, Hassan
    ANNALS OF PHYSICS, 2015, 360 : 520 - 538
  • [32] Stochastic resonance in overdamped two coupled anharmonic oscillators
    Gandhimathi, VM
    Murali, K
    Rajasekar, S
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 347 : 99 - 116
  • [33] GENERAL ANHARMONIC OSCILLATORS
    BANERJEE, K
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 364 (1717): : 265 - 275
  • [34] Vibrational and stochastic resonances in two coupled overdamped anharmonic oscillators
    Gandhimathi, V. M.
    Rajasekar, S.
    Kurths, J.
    PHYSICS LETTERS A, 2006, 360 (02) : 279 - 286
  • [35] Two-step approach to the dynamics of coupled anharmonic oscillators
    Chung, N. N. q
    Chew, L. Y.
    PHYSICAL REVIEW A, 2009, 80 (01):
  • [36] On aclass of anharmonic oscillators
    Chatzakou, Marianna
    Delgado, Julio
    Ruzhansky, Michael
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 153 : 1 - 29
  • [37] Two-dimensional spectroscopy and harmonically coupled anharmonic oscillators
    Okumura, K
    Jonas, DM
    Tanimura, Y
    CHEMICAL PHYSICS, 2001, 266 (2-3) : 237 - 250
  • [38] Unitary transformations of a family of two-dimensional anharmonic oscillators
    Francisco M. Fernández
    Javier Garcia
    Journal of Mathematical Chemistry, 2016, 54 : 1321 - 1326
  • [39] Unitary transformations of a family of two-dimensional anharmonic oscillators
    Fernandez, Francisco M.
    Garcia, Javier
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2016, 54 (06) : 1321 - 1326
  • [40] On perturbed two-body problems and harmonic oscillators
    Aparicio, I
    Floria, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE CHIMIE ASTRONOMIE, 1996, 323 (01): : 71 - 76