On the Stable Eigenvalues of Perturbed Anharmonic Oscillators in Dimension Two

被引:0
|
作者
Dario Bambusi
Beatrice Langella
Marc Rouveyrol
机构
[1] Università degli Studi di Milano,Dipartimento di Matematica
[2] International School for Advanced Studies (SISSA),undefined
[3] DER de mathématiques,undefined
[4] ENS Paris-Saclay,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the asymptotic behavior of the spectrum of a quantum system which is a perturbation of a spherically symmetric anharmonic oscillator in dimension 2. We prove that a large part of its eigenvalues can be obtained by Bohr–Sommerfeld quantization rule applied to the normal form Hamiltonian and also admits an asymptotic expansion at infinity. The proof is based on the generalization to the present context of the normal form approach developed in Bambusi et al. (Commun Part Differ Equ 45:1–18, 2020) (see also Parnovski and Sobolev in Invent Math 181(3):467–540, 2010) for the particular case of Td\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}^d$$\end{document}.
引用
收藏
页码:309 / 348
页数:39
相关论文
共 50 条