On Harmonic Close-To-Convex Functions

被引:0
|
作者
Saminathan Ponnusamy
Anbareeswaran Sairam Kaliraj
机构
[1] Indian Institute of Technology Madras,Department of Mathematics
关键词
Coefficient inequality; univalence; close-to-convex; univalent harmonic functions; Gaussian hypergeometric functions; 30C45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the family of sense-preserving complex-valued harmonic functions f that are normalized and close-to-convex on the open unit disk D. First we investigate the conditions for which f is close-to-convex on D. As a consequence, we derive a sufficient condition for f to be in this family. Using the condition, we establish sufficient conditions for f to be close-to-convex, in terms of the coefficients of the analytic and the co-analytic parts of f. Finally, we determine conditions on a, b such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z)=zF(a,b;a+b;z)+\overline{\alpha z^{2}F(a,b;a+b;z)}$$\end{document} is harmonic close-to-convex (and hence univalent) in D, where F(a, b; c; z) denotes the Gaussian hypergeometric function. A similar result, and a number of interesting corollaries and examples of harmonic close-to-convex functions, are also obtained.
引用
收藏
页码:669 / 685
页数:16
相关论文
共 50 条
  • [21] CLASS OF CLOSE-TO-CONVEX FUNCTIONS
    SILVERMAN, H
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 36 (02) : 477 - 484
  • [22] On a subclass of close-to-convex harmonic mappings
    Sun, Yong
    Jiang, Yue-Ping
    Rasila, Antti
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (12) : 1627 - 1643
  • [23] MEROMORPHIC CLOSE-TO-CONVEX FUNCTIONS
    LIBERA, RJ
    DUKE MATHEMATICAL JOURNAL, 1965, 32 (01) : 121 - &
  • [24] On a generalization of close-to-convex functions
    Sahoo, Swadesh Kumar
    Sharma, Navneet Lal
    ANNALES POLONICI MATHEMATICI, 2015, 113 (01) : 93 - 108
  • [25] A SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS
    Zhang, Zheng-Lv
    Xu, Qing-Hua
    TAMKANG JOURNAL OF MATHEMATICS, 2013, 44 (01): : 83 - 89
  • [26] A CLASS OF CLOSE-TO-CONVEX FUNCTIONS
    GOEL, RM
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1968, 18 (01) : 104 - &
  • [27] A subclass of close-to-convex harmonic mappings
    Nagpal, Sumit
    Ravichandran, V.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (02) : 204 - 216
  • [28] On a subclass of harmonic close-to-convex mappings
    Nirupam Ghosh
    A. Vasudevarao
    Monatshefte für Mathematik, 2019, 188 : 247 - 267
  • [29] On a subclass of close-to-convex harmonic mappings
    Rajbala
    Prajapat, Jugal K.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (06)
  • [30] Close-to-convex harmonic univalent mapping
    Zhou, Ze-Min
    Liang, Xiang-Qian
    Zhang, Yong-Hua
    Xiangtan Daxue Ziran Kexue Xuebao, 2002, 24 (04):