On Harmonic Close-To-Convex Functions

被引:0
|
作者
Saminathan Ponnusamy
Anbareeswaran Sairam Kaliraj
机构
[1] Indian Institute of Technology Madras,Department of Mathematics
关键词
Coefficient inequality; univalence; close-to-convex; univalent harmonic functions; Gaussian hypergeometric functions; 30C45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the family of sense-preserving complex-valued harmonic functions f that are normalized and close-to-convex on the open unit disk D. First we investigate the conditions for which f is close-to-convex on D. As a consequence, we derive a sufficient condition for f to be in this family. Using the condition, we establish sufficient conditions for f to be close-to-convex, in terms of the coefficients of the analytic and the co-analytic parts of f. Finally, we determine conditions on a, b such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z)=zF(a,b;a+b;z)+\overline{\alpha z^{2}F(a,b;a+b;z)}$$\end{document} is harmonic close-to-convex (and hence univalent) in D, where F(a, b; c; z) denotes the Gaussian hypergeometric function. A similar result, and a number of interesting corollaries and examples of harmonic close-to-convex functions, are also obtained.
引用
收藏
页码:669 / 685
页数:16
相关论文
共 50 条
  • [11] ON A SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS
    MOGRA, ML
    AHUJA, OP
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1982, 27 (08): : 849 - 862
  • [12] ON A SET OF CLOSE-TO-CONVEX FUNCTIONS
    Sharma, Poonam
    Raina, Ravinder Krishna
    Sokol, Janusz
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2018, 55 (02) : 190 - 202
  • [13] Doubly close-to-convex functions
    Dorff, M
    Naraniecka, I
    Szynal, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 290 (01) : 55 - 62
  • [14] ON A SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS
    Wang, Zhi-Gang
    Chen, Da-Zhao
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2009, 38 (02): : 95 - 101
  • [15] ON CERTAIN CLOSE-TO-CONVEX FUNCTIONS
    Ali, Md Firoz
    Nurezzaman, M. D.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (02) : 365 - 375
  • [16] On a subclass of close-to-convex functions
    Kowalczyk, Joanna
    Les-Bomba, Edyta
    APPLIED MATHEMATICS LETTERS, 2010, 23 (10) : 1147 - 1151
  • [17] THE COEFFICIENTS OF CLOSE-TO-CONVEX FUNCTIONS
    READE, MO
    DUKE MATHEMATICAL JOURNAL, 1956, 23 (03) : 459 - 462
  • [18] ON A CLASS OF CLOSE-TO-CONVEX FUNCTIONS
    GOEL, RM
    MEHROK, BS
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1981, 12 (05): : 648 - 658
  • [19] ON CLOSE-TO-CONVEX ANALYTIC FUNCTIONS
    POMMERENKE, C
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (01) : 176 - +
  • [20] On a Subclass of Close-to-Convex Functions
    Chung, Yao Liang
    Mohd, Maisarah Haji
    Lee, See Keong
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (03): : 611 - 621