On Harmonic Close-To-Convex Functions

被引:0
|
作者
Saminathan Ponnusamy
Anbareeswaran Sairam Kaliraj
机构
[1] Indian Institute of Technology Madras,Department of Mathematics
关键词
Coefficient inequality; univalence; close-to-convex; univalent harmonic functions; Gaussian hypergeometric functions; 30C45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the family of sense-preserving complex-valued harmonic functions f that are normalized and close-to-convex on the open unit disk D. First we investigate the conditions for which f is close-to-convex on D. As a consequence, we derive a sufficient condition for f to be in this family. Using the condition, we establish sufficient conditions for f to be close-to-convex, in terms of the coefficients of the analytic and the co-analytic parts of f. Finally, we determine conditions on a, b such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z)=zF(a,b;a+b;z)+\overline{\alpha z^{2}F(a,b;a+b;z)}$$\end{document} is harmonic close-to-convex (and hence univalent) in D, where F(a, b; c; z) denotes the Gaussian hypergeometric function. A similar result, and a number of interesting corollaries and examples of harmonic close-to-convex functions, are also obtained.
引用
收藏
页码:669 / 685
页数:16
相关论文
共 50 条
  • [1] On Harmonic Close-To-Convex Functions
    Ponnusamy, Saminathan
    Kaliraj, Anbareeswaran Sairam
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2012, 12 (02) : 669 - 685
  • [2] Coefficient Conditions for Harmonic Close-to-Convex Functions
    Hayami, Toshio
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [3] Harmonic close-to-convex functions and minimal surfaces
    Ponnusamy, Saminathan
    Rasila, Antti
    Kaliraj, A. Sairam
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (07) : 986 - 1002
  • [4] On close-to-convex harmonic mappings
    Bshouty, D.
    Joshi, S. S.
    Joshi, S. B.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (09) : 1195 - 1199
  • [5] A SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS
    Seker, Bilal
    Cho, Nak Eun
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (04): : 373 - 379
  • [6] SUBCLASSES OF CLOSE-TO-CONVEX FUNCTIONS
    Singh, Harjinder
    Mehrok, B. S.
    TAMKANG JOURNAL OF MATHEMATICS, 2013, 44 (04): : 377 - 386
  • [7] On a Subclass of Close-to-Convex Functions
    Yao Liang Chung
    Maisarah Haji Mohd
    See Keong Lee
    Bulletin of the Iranian Mathematical Society, 2018, 44 : 611 - 621
  • [8] WEAKLY CLOSE-TO-CONVEX FUNCTIONS
    LIVINGSTON, AE
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1988, 18 (04) : 719 - 732
  • [9] CLOSE-TO-CONVEX SCHLICHT FUNCTIONS
    KAPLAN, W
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 59 (04) : 351 - 351
  • [10] On a subclass of close-to-convex functions
    Dash, Prachi Prajna
    Prajapat, Jugal Kishore
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024, 17 (08)