Weak solutions to joined nonlinear systems of PDEs

被引:0
|
作者
N. Bubner
W. Horner
J. Sokołowski
机构
[1] Weierstrass Institute for Applied Analysis and Stochastics,
[2] Mohrenstrasse 39,undefined
[3] 10117 Berlin,undefined
[4] Germany,undefined
[5] California State University Northridge,undefined
[6] 18111 Nordhoff St.,undefined
[7] Northridge,undefined
[8] CA 91330 USA,undefined
[9] Institut Elie Cartan,undefined
[10] Laboratoire de Mathématiques,undefined
[11] Université Henri Poincaré Nancy I,undefined
[12] B.P. 239,undefined
[13] 54506 Vandoeuvre lès Nancy Cedex,undefined
[14] France,undefined
[15] and Systems Research Institute of the Polish Academy of Sciences,undefined
[16] ul. Newelska 6,undefined
[17] 01-447 Warszawa,undefined
[18] Poland,undefined
来源
Zeitschrift für angewandte Mathematik und Physik ZAMP | 2001年 / 52卷
关键词
Key words. Systems of nonlinear PDEs with discontinuous coefficients.;
D O I
暂无
中图分类号
学科分类号
摘要
We establish an existence and uniqueness result for a system which consists of a finite number of coupled nonlinear systems. In each system we have two highly nonlinearly coupled equations. Such problems arise if one couples thin rods of shape memory alloys, and each of the rods is described by Falk's Landau-Ginzburg model. The two equations in each system stand for the momentum and energy balance, respectively.
引用
收藏
页码:713 / 729
页数:16
相关论文
共 50 条
  • [41] Use of Particular Analytical Solutions for Calculations of Nonlinear PDEs
    Porubov, A.
    Bouche, D.
    Bonnaud, G.
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS '34, 2008, 1067 : 145 - 154
  • [42] REGULARITY OF BMO WEAK SOLUTIONS TO NONLINEAR PARABOLIC SYSTEMS VIA HOMOTOPY
    Le, Dung
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (05) : 2723 - 2753
  • [43] Existence of positive weak solutions for (p, q)-Laplacian nonlinear systems
    Ala, Samira
    Afrouzi, G. A.
    Niknam, A.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2015, 125 (04): : 537 - 544
  • [44] On the existence of weak solutions to a class of nonlinear elliptic systems with drift term
    Cirmi, G. R.
    D'Asero, S.
    Leonardi, S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (02)
  • [45] Probabilistic interpretation for solutions of fully nonlinear stochastic PDEs
    Anis Matoussi
    Dylan Possamaï
    Wissal Sabbagh
    Probability Theory and Related Fields, 2019, 174 : 177 - 233
  • [46] PARAMETRIC NONLINEAR PDES WITH MULTIPLE SOLUTIONS: A PGD APPROACH
    Beringhier, Marianne
    Leygue, Adrien
    Chinesta, Francisco
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (02): : 383 - 392
  • [47] Probabilistic interpretation for solutions of fully nonlinear stochastic PDEs
    Matoussi, Anis
    Possamai, Dylan
    Sabbagh, Wissal
    PROBABILITY THEORY AND RELATED FIELDS, 2019, 174 (1-2) : 177 - 233
  • [48] A MOMENT APPROACH FOR ENTROPY SOLUTIONS TO NONLINEAR HYPERBOLIC PDES
    Marx, Swann
    Weisser, Tillmann
    Henrion, Didier
    Lasserre, Jean Bernard
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2020, 10 (01) : 113 - 140
  • [49] A method for constructing exact solutions of nonlinear delay PDEs
    Polyanin, Andrei D.
    Sorokin, Vsevolod G.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 494 (02)
  • [50] General solutions of the nonlinear PDEs governing the erosion kinetics
    Panayotounakos, DE
    Zafeiropoulos, KP
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2002, 8 (01) : 69 - 85