Weak solutions to joined nonlinear systems of PDEs

被引:0
|
作者
N. Bubner
W. Horner
J. Sokołowski
机构
[1] Weierstrass Institute for Applied Analysis and Stochastics,
[2] Mohrenstrasse 39,undefined
[3] 10117 Berlin,undefined
[4] Germany,undefined
[5] California State University Northridge,undefined
[6] 18111 Nordhoff St.,undefined
[7] Northridge,undefined
[8] CA 91330 USA,undefined
[9] Institut Elie Cartan,undefined
[10] Laboratoire de Mathématiques,undefined
[11] Université Henri Poincaré Nancy I,undefined
[12] B.P. 239,undefined
[13] 54506 Vandoeuvre lès Nancy Cedex,undefined
[14] France,undefined
[15] and Systems Research Institute of the Polish Academy of Sciences,undefined
[16] ul. Newelska 6,undefined
[17] 01-447 Warszawa,undefined
[18] Poland,undefined
来源
Zeitschrift für angewandte Mathematik und Physik ZAMP | 2001年 / 52卷
关键词
Key words. Systems of nonlinear PDEs with discontinuous coefficients.;
D O I
暂无
中图分类号
学科分类号
摘要
We establish an existence and uniqueness result for a system which consists of a finite number of coupled nonlinear systems. In each system we have two highly nonlinearly coupled equations. Such problems arise if one couples thin rods of shape memory alloys, and each of the rods is described by Falk's Landau-Ginzburg model. The two equations in each system stand for the momentum and energy balance, respectively.
引用
收藏
页码:713 / 729
页数:16
相关论文
共 50 条
  • [21] Construction of exact solutions to nonlinear PDEs with delay using solutions of simpler PDEs without delay
    Polyanin, Andrei D.
    Sorokin, Vsevolod G.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 95
  • [22] Approximate solutions of nonlinear PDEs by the invariant expansion
    吴江龙
    楼森岳
    Chinese Physics B, 2012, 21 (12) : 31 - 36
  • [23] Approximate solutions of nonlinear PDEs by the invariant expansion
    Wu Jiang-Long
    Lou Sen-Yue
    CHINESE PHYSICS B, 2012, 21 (12)
  • [24] New Positive Solutions of Nonlinear Elliptic PDEs
    Inc, Mustafa
    Bouteraa, Noureddine
    Akinlar, Mehmet Ali
    Benaicha, Slimane
    Chu, Yu-Ming
    Weber, Gerhard-Wilhelm
    Almohsen, Bandar
    APPLIED SCIENCES-BASEL, 2020, 10 (14):
  • [25] Regularity of very weak solutions for a class of nonlinear elliptic systems
    Zheng, SZ
    Fang, AN
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 1998, 14 : 733 - 740
  • [26] POSITIVE WEAK RADIAL SOLUTIONS OF NONLINEAR SYSTEMS WITH p LAPLACIAN
    Budisan, Sorin
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2011, 3 (02): : 209 - 224
  • [27] Weak convergence of solutions of the Liouville equation for nonlinear Hamiltonian systems
    Kozlov, VV
    Treshchev, DV
    THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 134 (03) : 339 - 350
  • [28] Weak Convergence of Solutions of the Liouville Equation for Nonlinear Hamiltonian Systems
    V. V. Kozlov
    D. V. Treshchev
    Theoretical and Mathematical Physics, 2003, 134 : 339 - 350
  • [29] Segregated solutions for nonlinear Schrodinger systems with weak interspecies forces
    Pistoia, Angela
    Vaira, Giusi
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (11) : 2146 - 2179
  • [30] Lp Estimates for Weak Solutions to Nonlinear Degenerate Parabolic Systems
    Wei, Na
    Ge, Xiangyu
    Wu, Yonghong
    Zhao, Leina
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2017, 2017