Weak solutions to joined nonlinear systems of PDEs

被引:0
|
作者
N. Bubner
W. Horner
J. Sokołowski
机构
[1] Weierstrass Institute for Applied Analysis and Stochastics,
[2] Mohrenstrasse 39,undefined
[3] 10117 Berlin,undefined
[4] Germany,undefined
[5] California State University Northridge,undefined
[6] 18111 Nordhoff St.,undefined
[7] Northridge,undefined
[8] CA 91330 USA,undefined
[9] Institut Elie Cartan,undefined
[10] Laboratoire de Mathématiques,undefined
[11] Université Henri Poincaré Nancy I,undefined
[12] B.P. 239,undefined
[13] 54506 Vandoeuvre lès Nancy Cedex,undefined
[14] France,undefined
[15] and Systems Research Institute of the Polish Academy of Sciences,undefined
[16] ul. Newelska 6,undefined
[17] 01-447 Warszawa,undefined
[18] Poland,undefined
关键词
Key words. Systems of nonlinear PDEs with discontinuous coefficients.;
D O I
暂无
中图分类号
学科分类号
摘要
We establish an existence and uniqueness result for a system which consists of a finite number of coupled nonlinear systems. In each system we have two highly nonlinearly coupled equations. Such problems arise if one couples thin rods of shape memory alloys, and each of the rods is described by Falk's Landau-Ginzburg model. The two equations in each system stand for the momentum and energy balance, respectively.
引用
收藏
页码:713 / 729
页数:16
相关论文
共 50 条
  • [1] Weak solutions to joined nonlinear systems of PDEs
    Bubner, N
    Horn, W
    Sokolowski, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2001, 52 (05): : 713 - 729
  • [2] Growth conditions and regularity for weak solutions to nonlinear elliptic pdes
    Marcellini, Paolo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (01)
  • [3] On billiard solutions of nonlinear PDEs
    Alber, MS
    Camassa, R
    Fedorov, YN
    Holm, DD
    Marsden, JE
    PHYSICS LETTERS A, 1999, 264 (2-3) : 171 - 178
  • [4] Weak solutions for a class of nonlinear systems of viscoelasticity
    Demoulini, S
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 155 (04) : 299 - 334
  • [5] Weak Solutions for a Class of Nonlinear Systems of Viscoelasticity
    Sophia Demoulini
    Archive for Rational Mechanics and Analysis, 2000, 155 : 299 - 334
  • [6] Regularity of weak solutions to nonlinear Maxwell systems
    Pan, Xing-Bin
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (07)
  • [7] ON POSITIVE WEAK SOLUTIONS FOR A CLASS OF NONLINEAR SYSTEMS
    Khafagy, S. A.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (40): : 149 - 156
  • [8] Existence of Strong Solutions for Nonlinear Systems of PDEs Arising in Convective Flow
    Bouazzaoui, Khaled
    Aiboudi, Mohammed
    Ahmed, Sameh Elsayed
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 2022
  • [9] Sobolev weak solutions for parabolic PDEs and FBSDEs
    Zhang, Feng
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (9-10) : 533 - 536
  • [10] Exact and Approximate Solutions for Nonlinear PDEs
    Hong, Baojian
    Lu, Dianchen
    Khalique, Chaudry Masood
    Salas, Alvaro H.
    Van Gorder, Robert A.
    ABSTRACT AND APPLIED ANALYSIS, 2014,