The satisfiability problem in regular CNF-formulas

被引:12
|
作者
F. Manyà
R. Béjar
G. Escalada-Imaz
机构
[1] Department d’Informàtica,
[2] Universitat de Lleida (UdL),undefined
[3] Plaça Victor Siurana,undefined
[4] 1,undefined
[5] 25003 Lleida,undefined
[6] Spain e-mail:{felip,undefined
[7] ramon}@eup.udl.es,undefined
[8] Artificial Intelligence Research Institute,undefined
[9] IIIA-CSIC,undefined
[10] Campus UAB,undefined
[11] 08193 Bellaterra,undefined
[12] Spain e-mail:gonzalo@iiia.csic.es,undefined
关键词
Key words Multiple-valued regular CNF-formulas; satisfiability problem; threshold; benchmarks.;
D O I
10.1007/s005000050042
中图分类号
学科分类号
摘要
 In this paper we deal with the propositional satisfiability (SAT) problem for a kind of multiple-valued clausal forms known as regular CNF-formulas and extend some known results from classical logic to this kind of formulas. We present a Davis–Putnam-style satisfiability checking procedure for regular CNF-formulas equipped with suitable data structures and prove its completeness. Then, we describe a series of experiments for regular random 3-SAT instances. We observe that, for the regular 3-SAT problem with this procedure, there exists a threshold of the ratio of clauses to variables such that (i) the most computationally difficult instances tend to be found near the threshold, (ii) there is a sharp transition from satisfiable to unsatisfiable instances at the threshold and (iii) the value of the threshold increases as the number of truth values considered increases. Instances in the hard part provide benchmarks for the evaluation of regular satisfiability solvers.
引用
收藏
页码:116 / 123
页数:7
相关论文
共 50 条
  • [41] Satisfiability and meaning of formulas and sets of formulas in approximation spaces
    Gomolinska, A
    FUNDAMENTA INFORMATICAE, 2005, 67 (1-3) : 77 - 92
  • [42] Friends or Foes? On Planning as Satisfiability and Abstract CNF Encodings
    Domshlak, Carmel
    Hoffmann, Joerg
    Sabharwal, Ashish
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2009, 36 : 415 - 469
  • [43] COUNTING SOLUTIONS TO RANDOM CNF FORMULAS
    Galanis, Andreas
    Goldberg, Leslie Ann
    Guo, Heng
    Yang, Kuan
    SIAM JOURNAL ON COMPUTING, 2021, 50 (06) : 1701 - 1738
  • [44] On extremal k-CNF formulas
    Amano, Kazuyuki
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 35 : 39 - 50
  • [45] On solving 3CNF-satisfiability with an in vivo algorithm
    Eng, TL
    BIOSYSTEMS, 1999, 52 (1-3) : 135 - 141
  • [46] CNF SATISFIABILITY TEST BY COUNTING AND POLYNOMIAL AVERAGE TIME
    IWAMA, K
    SIAM JOURNAL ON COMPUTING, 1989, 18 (02) : 385 - 391
  • [47] The ROBDD size of simple CNF formulas
    Langberg, M
    Pnueli, A
    Rodeh, Y
    CORRECT HARDWARE DESIGN AND VERIFICATION METHODS, PROCEEDINGS, 2003, 2860 : 363 - 377
  • [48] The Approximate Degree of DNF and CNF Formulas
    Sherstov, Alexander A.
    PROCEEDINGS OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '22), 2022, : 1194 - 1207
  • [49] UPPER BOUND ON THE SATISFIABILITY THRESHOLD OF REGULAR RANDOM (k, s)-SAT PROBLEM
    Zhou, Jicheng
    Xu, Daoyun
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2016, 12 (02): : 477 - 489
  • [50] Clause Elimination Procedures for CNF Formulas
    Heule, Marijn
    Jarvisalo, Matti
    Biere, Armin
    LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, 2010, 6397 : 357 - +