The satisfiability problem in regular CNF-formulas

被引:12
|
作者
F. Manyà
R. Béjar
G. Escalada-Imaz
机构
[1] Department d’Informàtica,
[2] Universitat de Lleida (UdL),undefined
[3] Plaça Victor Siurana,undefined
[4] 1,undefined
[5] 25003 Lleida,undefined
[6] Spain e-mail:{felip,undefined
[7] ramon}@eup.udl.es,undefined
[8] Artificial Intelligence Research Institute,undefined
[9] IIIA-CSIC,undefined
[10] Campus UAB,undefined
[11] 08193 Bellaterra,undefined
[12] Spain e-mail:gonzalo@iiia.csic.es,undefined
关键词
Key words Multiple-valued regular CNF-formulas; satisfiability problem; threshold; benchmarks.;
D O I
10.1007/s005000050042
中图分类号
学科分类号
摘要
 In this paper we deal with the propositional satisfiability (SAT) problem for a kind of multiple-valued clausal forms known as regular CNF-formulas and extend some known results from classical logic to this kind of formulas. We present a Davis–Putnam-style satisfiability checking procedure for regular CNF-formulas equipped with suitable data structures and prove its completeness. Then, we describe a series of experiments for regular random 3-SAT instances. We observe that, for the regular 3-SAT problem with this procedure, there exists a threshold of the ratio of clauses to variables such that (i) the most computationally difficult instances tend to be found near the threshold, (ii) there is a sharp transition from satisfiable to unsatisfiable instances at the threshold and (iii) the value of the threshold increases as the number of truth values considered increases. Instances in the hard part provide benchmarks for the evaluation of regular satisfiability solvers.
引用
收藏
页码:116 / 123
页数:7
相关论文
共 50 条
  • [31] Satisfiability of bright formulas
    Denisov A.S.
    Ukrainian Mathematical Journal, 2007, 59 (10) : 1606 - 1610
  • [32] Generalizations of matched CNF formulas
    Stefan Szeider
    Annals of Mathematics and Artificial Intelligence, 2005, 43 : 223 - 238
  • [33] Maximal Satisfiable CNF Formulas
    Porschen, Stefan
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, IMECS 2012, VOL I, 2012, : 240 - 245
  • [34] Generalizations of matched CNF formulas
    Szeider, S
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2005, 43 (1-4) : 223 - 238
  • [35] On the maximum satisfiability of random formulas
    Achlioptas, Dimitris
    Naor, Assaf
    Peres, Yuval
    JOURNAL OF THE ACM, 2007, 54 (02)
  • [36] Algorithms for Testing Satisfiability Formulas
    Marin Vlada
    Artificial Intelligence Review, 2001, 15 : 153 - 163
  • [37] Algorithms for testing satisfiability formulas
    Vlada, M
    ARTIFICIAL INTELLIGENCE REVIEW, 2001, 15 (03) : 153 - 163
  • [38] Satisfiability threshold of the random regular (s, c, k)-SAT problem
    Mo, Xiaoling
    Xu, Daoyun
    Yan, Kai
    Zhang, Zaijun
    FRONTIERS OF COMPUTER SCIENCE, 2022, 16 (03)
  • [39] Satisfiability threshold of the random regular (s, c, k)-SAT problem
    Xiaoling Mo
    Daoyun Xu
    Kai Yan
    Zaijun Zhang
    Frontiers of Computer Science, 2022, 16
  • [40] Satisfiability threshold of the random regular (s,c,k)-SAT problem
    Xiaoling MO
    Daoyun XU
    Kai YAN
    Zaijun ZHANG
    Frontiers of Computer Science, 2022, 16 (03) : 220 - 222