Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations

被引:0
|
作者
Anotida Madzvamuse
Hussaini S. Ndakwo
Raquel Barreira
机构
[1] University of Sussex,Department of Mathematics, School of Mathematical and Physical Sciences
[2] University of Sussex,Department of Mathematics, School of Mathematical and Physical Sciences
[3] Escola Superior de Tecnologia do Barreiro/IPS,Rua Américo da Silva Marinho
来源
关键词
Cross-diffusion reaction systems; Cross-diffusion driven instability; Parameter space identification; Pattern formation; Planary domains; Finite element method; 35K57; 92Bxx; 37D99; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
By introducing linear cross-diffusion for a two-component reaction-diffusion system with activator-depleted reaction kinetics (Gierer and Meinhardt, Kybernetik 12:30–39, 1972; Prigogine and Lefever, J Chem Phys 48:1695–1700, 1968; Schnakenberg, J Theor Biol 81:389–400, 1979), we derive cross-diffusion-driven instability conditions and show that they are a generalisation of the classical diffusion-driven instability conditions in the absence of cross-diffusion. Our most revealing result is that, in contrast to the classical reaction-diffusion systems without cross-diffusion, it is no longer necessary to enforce that one of the species diffuse much faster than the other. Furthermore, it is no longer necessary to have an activator–inhibitor mechanism as premises for pattern formation, activator–activator, inhibitor–inhibitor reaction kinetics as well as short-range inhibition and long-range activation all have the potential of giving rise to cross-diffusion-driven instability. To support our theoretical findings, we compute cross-diffusion induced parameter spaces and demonstrate similarities and differences to those obtained using standard reaction-diffusion theory. Finite element numerical simulations on planary square domains are presented to back-up theoretical predictions. For the numerical simulations presented, we choose parameter values from and outside the classical Turing diffusively-driven instability space; outside, these are chosen to belong to cross-diffusively-driven instability parameter spaces. Our numerical experiments validate our theoretical predictions that parameter spaces induced by cross-diffusion in both the u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document} and v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} components of the reaction-diffusion system are substantially larger and different from those without cross-diffusion. Furthermore, the parameter spaces without cross-diffusion are sub-spaces of the cross-diffusion induced parameter spaces. Our results allow experimentalists to have a wider range of parameter spaces from which to select reaction kinetic parameter values that will give rise to spatial patterning in the presence of cross-diffusion.
引用
收藏
页码:709 / 743
页数:34
相关论文
共 50 条
  • [41] Turing instability in the reaction-diffusion network
    Zheng, Qianqian
    Shen, Jianwei
    Xu, Yong
    PHYSICAL REVIEW E, 2020, 102 (06)
  • [42] Wavy fronts in reaction-diffusion systems with cross advection
    E. P. Zemskov
    K. Kassner
    M. A. Tsyganov
    M. J.B. Hauser
    The European Physical Journal B, 2009, 72 : 457 - 465
  • [43] Turing instability in sub-diffusive reaction-diffusion systems
    Nec, Y.
    Nepomnyashchy, A. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (49) : 14687 - 14702
  • [44] Turing space in reaction-diffusion systems with density-dependent cross diffusion
    Zemskov, E. P.
    Kassner, K.
    Hauser, M. J. B.
    Horsthemke, W.
    PHYSICAL REVIEW E, 2013, 87 (03):
  • [45] Instability of pukes in gradient reaction-diffusion systems: a symplectic approach
    Beck, M.
    Cox, G.
    Jones, C.
    Latushkin, Y.
    McQuighan, K.
    Sukhtayev, A.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2117):
  • [46] Instability of planar traveling waves in bistable reaction-diffusion systems
    Taniguchi, M
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2003, 3 (01): : 21 - 44
  • [47] Analysis and simulation of waves in reaction-diffusion systems
    Genesio, R
    Nitti, M
    Torcini, A
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 2059 - 2064
  • [48] Analysis of Reaction-Diffusion Systems with Anomalous Subdiffusion
    Haugh, Jason M.
    BIOPHYSICAL JOURNAL, 2009, 97 (02) : 435 - 442
  • [49] Differential dissipativity analysis of reaction-diffusion systems
    Miranda-Villatoro, Felix A.
    Sepulchre, Rodolphe
    SYSTEMS & CONTROL LETTERS, 2021, 148
  • [50] Cross-diffusion-driven hydrodynamic instabilities in a double-layer system: General classification and nonlinear simulations
    Budroni, M. A.
    PHYSICAL REVIEW E, 2015, 92 (06):