Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations

被引:0
|
作者
Anotida Madzvamuse
Hussaini S. Ndakwo
Raquel Barreira
机构
[1] University of Sussex,Department of Mathematics, School of Mathematical and Physical Sciences
[2] University of Sussex,Department of Mathematics, School of Mathematical and Physical Sciences
[3] Escola Superior de Tecnologia do Barreiro/IPS,Rua Américo da Silva Marinho
来源
关键词
Cross-diffusion reaction systems; Cross-diffusion driven instability; Parameter space identification; Pattern formation; Planary domains; Finite element method; 35K57; 92Bxx; 37D99; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
By introducing linear cross-diffusion for a two-component reaction-diffusion system with activator-depleted reaction kinetics (Gierer and Meinhardt, Kybernetik 12:30–39, 1972; Prigogine and Lefever, J Chem Phys 48:1695–1700, 1968; Schnakenberg, J Theor Biol 81:389–400, 1979), we derive cross-diffusion-driven instability conditions and show that they are a generalisation of the classical diffusion-driven instability conditions in the absence of cross-diffusion. Our most revealing result is that, in contrast to the classical reaction-diffusion systems without cross-diffusion, it is no longer necessary to enforce that one of the species diffuse much faster than the other. Furthermore, it is no longer necessary to have an activator–inhibitor mechanism as premises for pattern formation, activator–activator, inhibitor–inhibitor reaction kinetics as well as short-range inhibition and long-range activation all have the potential of giving rise to cross-diffusion-driven instability. To support our theoretical findings, we compute cross-diffusion induced parameter spaces and demonstrate similarities and differences to those obtained using standard reaction-diffusion theory. Finite element numerical simulations on planary square domains are presented to back-up theoretical predictions. For the numerical simulations presented, we choose parameter values from and outside the classical Turing diffusively-driven instability space; outside, these are chosen to belong to cross-diffusively-driven instability parameter spaces. Our numerical experiments validate our theoretical predictions that parameter spaces induced by cross-diffusion in both the u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document} and v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} components of the reaction-diffusion system are substantially larger and different from those without cross-diffusion. Furthermore, the parameter spaces without cross-diffusion are sub-spaces of the cross-diffusion induced parameter spaces. Our results allow experimentalists to have a wider range of parameter spaces from which to select reaction kinetic parameter values that will give rise to spatial patterning in the presence of cross-diffusion.
引用
收藏
页码:709 / 743
页数:34
相关论文
共 50 条
  • [21] Turing instability of the periodic solutions for reaction-diffusion systems with cross-diffusion and the patch model with cross-diffusion-like coupling
    Yi, Fengqi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 281 : 379 - 410
  • [22] Instability and pattern formation in reaction-diffusion systems: A higher order analysis
    Riaz, Syed Shahed
    Sharma, Rahul
    Bhattacharyya, S. P.
    Ray, D. S.
    JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (06):
  • [23] Nonideal Reaction-Diffusion Systems: Multiple Routes to Instability
    Aslyamov, Timur
    Avanzini, Francesco
    Fodor, Etienne
    Esposito, Massimiliano
    PHYSICAL REVIEW LETTERS, 2023, 131 (13)
  • [24] CHEMICAL WAVES AS A RESULT OF INSTABILITY IN REACTION-DIFFUSION SYSTEMS
    LIVSHITS, MA
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1983, 53 (01): : 83 - 88
  • [25] A reaction-diffusion model with nonlinearity driven diffusion
    Man-jun Ma
    Jia-jia Hu
    Jun-jie Zhang
    Ji-cheng Tao
    Applied Mathematics-A Journal of Chinese Universities, 2013, 28 : 290 - 302
  • [26] A reaction-diffusion model with nonlinearity driven diffusion
    Ma Man-jun
    Hu Jia-jia
    Zhang Jun-jie
    Tao Ji-cheng
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2013, 28 (03) : 290 - 302
  • [27] Instability of equilibria in some delay reaction-diffusion systems
    Laister, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 247 (02) : 588 - 607
  • [28] Analysis of hysteretic reaction-diffusion systems
    Chiu, C
    Walkington, N
    QUARTERLY OF APPLIED MATHEMATICS, 1998, 56 (01) : 89 - 106
  • [29] Moving Finite Element Simulations for Reaction-Diffusion Systems
    Hu, Guanghui
    Qiao, Zhonghua
    Tang, Tao
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (03) : 365 - 381
  • [30] Stability and cross-diffusion-driven instability for a water-vegetation model with the infiltration feedback effect
    Guo, Gaihui
    Zhao, Shihan
    Pang, Danfeng
    Su, Youhui
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (02):