Stochastic Control of Memory Mean-Field Processes

被引:0
|
作者
Nacira Agram
Bernt Øksendal
机构
[1] University of Oslo,Department of Mathematics
来源
关键词
Mean-field stochastic differential equation; Law process; Memory; Path segment spaces; Random probability measures; Stochastic maximum principle; Operator-valued absde; Mean–variance problem; 60H05; 60H20; 60J75; 93E20; 91G80; 91B70;
D O I
暂无
中图分类号
学科分类号
摘要
By a memory mean-field process we mean the solution X(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X(\cdot )$$\end{document} of a stochastic mean-field equation involving not just the current state X(t) and its law L(X(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}(X(t))$$\end{document} at time t,  but also the state values X(s) and its law L(X(s))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}(X(s))$$\end{document} at some previous times s<t.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s<t.$$\end{document} Our purpose is to study stochastic control problems of memory mean-field processes. We consider the space M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} of measures on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document} with the norm ||·||M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|| \cdot ||_{\mathcal {M}}$$\end{document} introduced by Agram and Øksendal (Model uncertainty stochastic mean-field control. arXiv:1611.01385v5, [2]), and prove the existence and uniqueness of solutions of memory mean-field stochastic functional differential equations. We prove two stochastic maximum principles, one sufficient (a verification theorem) and one necessary, both under partial information. The corresponding equations for the adjoint variables are a pair of (time-advanced backward stochastic differential equations (absdes), one of them with values in the space of bounded linear functionals on path segment spaces. As an application of our methods, we solve a memory mean–variance problem as well as a linear–quadratic problem of a memory process.
引用
收藏
页码:181 / 204
页数:23
相关论文
共 50 条
  • [31] Discrete-Time Mean-Field Stochastic Control with Partial Observations
    Chichportich J.
    Kharroubi I.
    Applied Mathematics and Optimization, 2023, 88 (03):
  • [32] Stochastic Maximum Principle for Generalized Mean-Field Delay Control Problem
    Hancheng Guo
    Jie Xiong
    Jiayu Zheng
    Journal of Optimization Theory and Applications, 2024, 201 : 352 - 377
  • [33] BELLMAN EQUATION AND VISCOSITY SOLUTIONS FOR MEAN-FIELD STOCHASTIC CONTROL PROBLEM
    Huyen Pham
    Wei, Xiaoli
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2018, 24 (01) : 437 - 461
  • [34] Deep Learning and Mean-Field Games: A Stochastic Optimal Control Perspective
    Di Persio, Luca
    Garbelli, Matteo
    SYMMETRY-BASEL, 2021, 13 (01): : 1 - 20
  • [35] Mean-field stochastic H2/H∞ control with delay
    Zhang, Qixia
    INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (06) : 1551 - 1561
  • [36] A maximum principle for mean-field stochastic control system with noisy observation
    Wang, Guangchen
    Wu, Zhen
    AUTOMATICA, 2022, 137
  • [37] Mean-field stochastic Volterra optimal singular control with Poisson jumps
    Deepa, R.
    Muthukumar, P.
    IFAC PAPERSONLINE, 2016, 49 (01): : 230 - 235
  • [38] On optimal mean-field control problem of mean-field forward-backward stochastic system with jumps under partial information
    Qing Zhou
    Yong Ren
    Weixing Wu
    Journal of Systems Science and Complexity, 2017, 30 : 828 - 856
  • [39] Stochastic Maximum Principle for Generalized Mean-Field Delay Control Problem
    Guo, Hancheng
    Xiong, Jie
    Zheng, Jiayu
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 201 (01) : 352 - 377
  • [40] H∞ CONTROL FOR CONTINUOUS-TIME MEAN-FIELD STOCHASTIC SYSTEMS
    Ma, Limin
    Zhang, Tianliang
    Zhang, Weihai
    ASIAN JOURNAL OF CONTROL, 2016, 18 (05) : 1630 - 1640