Stochastic Control of Memory Mean-Field Processes

被引:0
|
作者
Nacira Agram
Bernt Øksendal
机构
[1] University of Oslo,Department of Mathematics
来源
关键词
Mean-field stochastic differential equation; Law process; Memory; Path segment spaces; Random probability measures; Stochastic maximum principle; Operator-valued absde; Mean–variance problem; 60H05; 60H20; 60J75; 93E20; 91G80; 91B70;
D O I
暂无
中图分类号
学科分类号
摘要
By a memory mean-field process we mean the solution X(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X(\cdot )$$\end{document} of a stochastic mean-field equation involving not just the current state X(t) and its law L(X(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}(X(t))$$\end{document} at time t,  but also the state values X(s) and its law L(X(s))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}(X(s))$$\end{document} at some previous times s<t.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s<t.$$\end{document} Our purpose is to study stochastic control problems of memory mean-field processes. We consider the space M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} of measures on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document} with the norm ||·||M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|| \cdot ||_{\mathcal {M}}$$\end{document} introduced by Agram and Øksendal (Model uncertainty stochastic mean-field control. arXiv:1611.01385v5, [2]), and prove the existence and uniqueness of solutions of memory mean-field stochastic functional differential equations. We prove two stochastic maximum principles, one sufficient (a verification theorem) and one necessary, both under partial information. The corresponding equations for the adjoint variables are a pair of (time-advanced backward stochastic differential equations (absdes), one of them with values in the space of bounded linear functionals on path segment spaces. As an application of our methods, we solve a memory mean–variance problem as well as a linear–quadratic problem of a memory process.
引用
收藏
页码:181 / 204
页数:23
相关论文
共 50 条
  • [21] On Mean-Field Partial Information Maximum Principle of Optimal Control for Stochastic Systems with Lévy Processes
    Mokhtar Hafayed
    Syed Abbas
    Abdelmadjid Abba
    Journal of Optimization Theory and Applications, 2015, 167 : 1051 - 1069
  • [22] Exact Stochastic Mean-Field dynamics
    Lacroix, Denis
    Hupin, Guillaume
    FUSION 08, 2009, 1098 : 128 - +
  • [23] STOCHASTIC EFFECTS IN MEAN-FIELD DYNAMOS
    MOSS, D
    BRANDENBURG, A
    TAVAKOL, R
    TUOMINEN, I
    ASTRONOMY & ASTROPHYSICS, 1992, 265 (02) : 843 - 849
  • [24] A framework and a mean-field algorithm for the local control of spatial processes
    Sabbadin, Regis
    Peyrard, Nathalie
    Forsell, Nicklas
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2012, 53 (01) : 66 - 86
  • [25] A Mean-Field Optimal Control for Fully Coupled Forward-Backward Stochastic Control Systems with Lévy Processes
    HUANG Zhen
    WANG Ying
    WANG Xiangrong
    JournalofSystemsScience&Complexity, 2022, 35 (01) : 205 - 220
  • [26] A Mean-Field Optimal Control for Fully Coupled Forward-Backward Stochastic Control Systems with Lévy Processes
    Zhen Huang
    Ying Wang
    Xiangrong Wang
    Journal of Systems Science and Complexity, 2022, 35 : 205 - 220
  • [27] Stochastic linear quadratic optimal control problems for mean-field stochastic evolution equations
    Lue, Qi
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
  • [28] Optimal control of forward–backward mean-field stochastic delayed systems
    Agram N.
    Røse E.E.
    Afrika Matematika, 2018, 29 (1-2) : 149 - 174
  • [29] On Optimal Mean-Field Control Problem of Mean-Field Forward-Backward Stochastic System with Jumps Under Partial Information
    Zhou Qing
    Ren Yong
    Wu Weixing
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2017, 30 (04) : 828 - 856
  • [30] On Optimal Mean-Field Control Problem of Mean-Field Forward-Backward Stochastic System with Jumps Under Partial Information
    ZHOU Qing
    REN Yong
    WU Weixing
    JournalofSystemsScience&Complexity, 2017, 30 (04) : 828 - 856