SCL-FExR: supervised contrastive learning approach for facial expression Recognition

被引:0
|
作者
Kshitiza Vasudeva
Akshat Dubey
Saravanan Chandran
机构
[1] National Institute of Technology,Department of Computer Science and Engineering
[2] Birla Institute of Technology,Department of Computer Science and Engineering
来源
关键词
Contrastive training; Supervised learning; FER2013; AffectNet; Facial expression Recognition;
D O I
暂无
中图分类号
学科分类号
摘要
Facial Expression Recognition (FER) is a significant field of computer vision and has emerged as a crucial component of Human-computer interaction. Breakthroughs in self-supervised representation learning have resulted from a renaissance of work in contrastive learning, following the state-of-the-art performance in unsupervised training of deep image models. However, due to the random sampling of false negatives for contrastive loss calculation, the representation quality might degrade in FER. In this work, we extend the self-supervised contrastive learning technique to the fully supervised setting to effectively exploit label information in classifying facial expressions. Therefore, we propose a Supervised Contrastive Learning- Facial Expression Recognition (SCL-FExR) system to create a model which is robust for real-world emotion detection. Our goal is not to compete with the highly complex state-of-the-art CNN-based Deep Neural Network, but to establish a method that can be incorporated to achieve similar performance but with less-complex models and more robustness. We demonstrate the effectiveness of the suggested method using three FER datasets: FER2013, AffectNet, and CK+. On FER2013, we achieved a similar accuracy of 76%, establishing a method that can be incorporated into less complex CNN-based Deep Neural Networks to achieve robustness and be significantly more noise-resistant. The secondary aim is to show how a data-based strategy may be used to train very complicated deep learning models instead of a model-based approach, which solves the issue of computational expenditure.
引用
收藏
页码:31351 / 31371
页数:20
相关论文
共 50 条
  • [21] Semi-supervised Learning of Deep Difference Features for Facial Expression Recognition
    Xu, Can
    Xu, Ruyi
    Chen, Jingying
    Liu, Leyuan
    PATTERN RECOGNITION AND COMPUTER VISION, PT III, 2018, 11258 : 245 - 254
  • [22] SCL-CVD: Supervised contrastive learning for code vulnerability detection via GraphCodeBERT
    Wang, Rongcun
    Xu, Senlei
    Tian, Yuan
    Ji, Xingyu
    Sun, Xiaobing
    Jiang, Shujuang
    COMPUTERS & SECURITY, 2024, 145
  • [23] SCL-IKD: intermediate knowledge distillation via supervised contrastive representation learning
    Sharma, Saurabh
    Lodhi, Shikhar Singh
    Chandra, Joydeep
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28520 - 28541
  • [24] SCL: Self-supervised contrastive learning for few-shot image classification
    Lim, Jit Yan
    Lim, Kian Ming
    Lee, Chin Poo
    Tan, Yong Xuan
    NEURAL NETWORKS, 2023, 165 : 19 - 30
  • [25] Semi-Supervised Action Recognition with Temporal Contrastive Learning
    Singh, Ankit
    Chakraborty, Omprakash
    Varshney, Ashutosh
    Panda, Rameswar
    Feris, Rogerio
    Saenko, Kate
    Das, Abir
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 10384 - 10394
  • [26] Contrastive Self-Supervised Learning for Skeleton Action Recognition
    Gao, Xuehao
    Yang, Yang
    Du, Shaoyi
    NEURIPS 2020 WORKSHOP ON PRE-REGISTRATION IN MACHINE LEARNING, VOL 148, 2020, 148 : 51 - 61
  • [27] Semi-Supervised Contrastive Learning for Human Activity Recognition
    Liu, Dongxin
    Abdelzaher, Tarek
    17TH ANNUAL INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SENSOR SYSTEMS (DCOSS 2021), 2021, : 45 - 53
  • [28] Targeted Supervised Contrastive Learning for Long-Tailed Recognition
    Li, Tianhong
    Cao, Peng
    Yuan, Yuan
    Fan, Lijie
    Yang, Yuzhe
    Feris, Rogerio
    Indyk, Piotr
    Katabi, Dina
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6908 - 6918
  • [29] Contrastive Self-Supervised Learning for Optical Music Recognition
    Penarrubia, Carlos
    Valero-Mas, Jose J.
    Calvo-Zaragoza, Jorge
    DOCUMENT ANALYSIS SYSTEMS, DAS 2024, 2024, 14994 : 312 - 326
  • [30] Facial micro-expression recognition: A machine learning approach
    Adegun, Iyanu Pelumi
    Vadapalli, Hima Bindu
    SCIENTIFIC AFRICAN, 2020, 8