Contrastive Self-Supervised Learning for Optical Music Recognition

被引:0
|
作者
Penarrubia, Carlos [1 ]
Valero-Mas, Jose J. [1 ]
Calvo-Zaragoza, Jorge [1 ]
机构
[1] Univ Alicante, Pattern Recognit & Artificial Intelligence Grp, San Vicente Del Raspeig, Spain
来源
关键词
Optical Music Recognition; Self-Supervised Learning; Contrastive Learning;
D O I
10.1007/978-3-031-70442-0_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optical Music Recognition (OMR) is the research area focused on transcribing images of musical scores. In recent years, this field has seen great development thanks to the emergence of Deep Learning. However, these types of solutions require large volumes of labeled data. To alleviate this problem, Contrastive Self-Supervised Learning (SSL) has emerged as a paradigm that leverages large amounts of unlabeled data to train neural networks, yielding meaningful and robust representations. In this work, we explore its first application to the field of OMR. By utilizing three datasets that represent the heterogeneity of musical scores in notations and graphic styles, and through multiple evaluation protocols, we demonstrate that contrastive SSL delivers promising results, significantly reducing data scarcity challenges in OMR. To the best of our knowledge, this is the first study that integrates these two fields. We hope this research serves as a baseline and stimulates further exploration.
引用
收藏
页码:312 / 326
页数:15
相关论文
共 50 条
  • [1] Contrastive Self-Supervised Learning for Skeleton Action Recognition
    Gao, Xuehao
    Yang, Yang
    Du, Shaoyi
    NEURIPS 2020 WORKSHOP ON PRE-REGISTRATION IN MACHINE LEARNING, VOL 148, 2020, 148 : 51 - 61
  • [2] Part Aware Contrastive Learning for Self-Supervised Action Recognition
    Hua, Yilei
    Wu, Wenhan
    Zheng, Ce
    Lu, Aidong
    Liu, Mengyuan
    Chen, Chen
    Wu, Shiqian
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 855 - 863
  • [3] Radar Signal Modulation Recognition With Self-Supervised Contrastive Learning
    Li, Shiya
    Du, Xiaolin
    Cui, Guolong
    Chen, Xiaolong
    Zheng, Jibin
    Wan, Xunyang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [4] Adversarial Self-Supervised Contrastive Learning
    Kim, Minseon
    Tack, Jihoon
    Hwang, Sung Ju
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [5] A Survey on Contrastive Self-Supervised Learning
    Jaiswal, Ashish
    Babu, Ashwin Ramesh
    Zadeh, Mohammad Zaki
    Banerjee, Debapriya
    Makedon, Fillia
    TECHNOLOGIES, 2021, 9 (01)
  • [6] Self-Supervised Learning: Generative or Contrastive
    Liu, Xiao
    Zhang, Fanjin
    Hou, Zhenyu
    Mian, Li
    Wang, Zhaoyu
    Zhang, Jing
    Tang, Jie
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 857 - 876
  • [7] Modulation Recognition of Digital Signals Based on Contrastive Self-Supervised Learning
    Liao, Yanping
    Gao, Yang
    Guo, Qiang
    2024 9TH INTERNATIONAL CONFERENCE ON ELECTRONIC TECHNOLOGY AND INFORMATION SCIENCE, ICETIS 2024, 2024, : 432 - 436
  • [8] SELF-SUPERVISED CONTRASTIVE LEARNING FOR AUDIO-VISUAL ACTION RECOGNITION
    Liu, Yang
    Tan, Ying
    Lan, Haoyuan
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1000 - 1004
  • [9] Self-Supervised Contrastive Learning for Robust Audio Sheet Music Retrieval Systems
    Carvalho, Luis
    Washuettl, Tobias
    Widmer, Gerhard
    PROCEEDINGS OF THE 2023 PROCEEDINGS OF THE 14TH ACM MULTIMEDIA SYSTEMS CONFERENCE, MMSYS 2023, 2023, : 239 - 248
  • [10] A comprehensive perspective of contrastive self-supervised learning
    Songcan CHEN
    Chuanxing GENG
    Frontiers of Computer Science, 2021, (04) : 102 - 104