Projectively Equivalent Riemannian Spaces as Quasi-bi-Hamiltonian Systems

被引:0
|
作者
M. Crampin
机构
[1] The Open University,Department of Applied Mathematics
来源
关键词
projective equivalence; quasi-bi-Hamiltonian system; Hamilton–Jacobi separability;
D O I
暂无
中图分类号
学科分类号
摘要
The class of Riemannian spaces admitting projectively, or geodesically, equivalent metrics is very closely related to a certain class of spaces for which the Hamilton–Jacobi equation for geodesics is separable. This fact is established, and its consequences explored, by showing that when a Riemannian space has a projectively equivalent metric its geodesic flow is a quasi-bi-Hamiltonian system. The existence of involutive first integrals of the geodesic flow, quadratic in the momenta, follows by a standard type of argument. When these integrals are independent they generate a Stäckel system.
引用
收藏
页码:237 / 248
页数:11
相关论文
共 50 条
  • [31] On Hamiltonian perturbations of hyperbolic systems of conservation laws I: Quasi-triviality of bi-Hamiltonian perturbations
    Dubrovin, B
    Liu, SQ
    Zhang, YJ
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (04) : 559 - 615
  • [32] Conformal quasi-bi-slant Riemannian maps
    Kumar, Sushil
    Kumar, Sumeet
    Kumar, Deepak
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 28 (04): : 335 - 349
  • [33] INVESTIGATION OF QUASI BI-SLANT RIEMANNIAN MAPS
    Kumar, Sushil
    Kumar, Sumeet
    Pandey, Shashikant
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2023, 38 (01): : 59 - 75
  • [34] V-Quasi-Bi-Slant Riemannian Maps
    Kumar, Sushil
    Bilal, Mohd
    Prasad, Rajendra
    Haseeb, Abdul
    Chen, Zhizhi
    SYMMETRY-BASEL, 2022, 14 (07):
  • [35] A CHARACTERISTIC OF RIEMANNIAN SPACES ADMITTING QUASI CONCIRCULAR TRANSFORMATION
    LI, ZL
    ACTA MATHEMATICA SCIENTIA, 1991, 11 (01) : 56 - 64
  • [36] Hamiltonian systems on quantized spaces
    Abad, ASD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (20): : 4795 - 4803
  • [37] Projectively equivalent 2-dimensional superintegrable systems with projective symmetries
    Vollmer, Andreas
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (09)
  • [38] On equivalent quasi-norms on Lorentz spaces
    Opic, B
    FUNCTION SPACES, DIFFERENTIAL OPERATORS AND NONLINEAR ANALYSIS: THE HANS TRIEBEL ANNIVERSARY VOLUME, 2003, : 415 - 426
  • [39] Equivalent quasi-norms on Lorentz spaces
    Edmunds, DE
    Opic, B
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (03) : 745 - 754
  • [40] HETEROCLINIC ORBITS FOR A CLASS OF HAMILTONIAN SYSTEMS ON RIEMANNIAN MANIFOLDS
    Liu, Fei
    Llibre, Jaume
    Zhang, Xiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (03) : 1097 - 1111