Linearization for finite plasticity under dislocation-density tensor regularization

被引:0
|
作者
Riccardo Scala
Ulisse Stefanelli
机构
[1] Università di Siena San Niccolò,Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche
[2] University of Vienna,Faculty of Mathematics
[3] Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes” - CNR,undefined
来源
关键词
Finite plasticity; Linearization; -convergence; Incremental problem;
D O I
暂无
中图分类号
学科分类号
摘要
Finite-plasticity theories often feature nonlocal energetic contributions in the plastic variables. By introducing a length-scale for plastic effects in the picture, these nonlocal terms open the way to existence results (Mainik and Mielke in J Nonlinear Sci 19(3):221–248, 2009). We focus here on a reference example in this direction, where a specific energetic contribution in terms of dislocation-density tensor is considered (Mielke and Müller in ZAMM Z Angew Math Mech 86:233–250, 2006). When external forces are small and dissipative terms are suitably rescaled, the finite-strain elastoplastic problem converges toward its linearized counterpart. We prove a Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-convergence result making this asymptotics rigorous, both at the incremental level and at the level of quasistatic evolution.
引用
收藏
页码:179 / 208
页数:29
相关论文
共 50 条
  • [41] Age-depth correlation, grain growth and dislocation-density evolution, for three ice cores
    Morland, L. W.
    JOURNAL OF GLACIOLOGY, 2009, 55 (190) : 345 - 352
  • [42] Dislocation core investigation by geometric phase analysis and the dislocation density tensor
    Kioseoglou, J.
    Dimitrakopulos, G. P.
    Komninou, Ph
    Karakostas, Th
    Aifantis, E. C.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (03)
  • [43] Plastic flow and dislocation strengthening in a dislocation density based formulation of plasticity
    Sudmanns, M.
    Gumbsch, P.
    Schulz, K.
    COMPUTATIONAL MATERIALS SCIENCE, 2018, 151 : 317 - 327
  • [44] Implementation of a Dislocation-density Based Single-Crystal Model into a Continuum Shock Hydrodynamics Code
    Luscher, Darby J.
    Kenamond, Mark A.
    Hunter, Abigail
    Mayeur, Jason R.
    Mourad, Hashem M.
    SHOCK COMPRESSION OF CONDENSED MATTER - 2017, 2018, 1979
  • [45] Crystal plasticity finite element simulation of NiTi shape memory alloy under canning compression based on constitutive model containing dislocation density
    Yan, Bingyao
    Jiang, Shuyong
    Hu, Li
    Zhang, Yanqiu
    Sun, Dong
    MECHANICS OF MATERIALS, 2021, 157
  • [46] Studying the effect of grain boundaries in dislocation density based crystal-plasticity finite element simulations
    Ma, A.
    Roters, F.
    Raabe, D.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2006, 43 (24) : 7287 - 7303
  • [47] Crystal plasticity finite element analysis of NiCoCrFe high entropy alloy considering dislocation density and damage
    Hu, Guang
    Zhao, Yingjie
    Ma, Shengguo
    Zhang, Tuanwei
    Zhao, Dan
    Wang, Zhihua
    Cailiao Gongcheng/Journal of Materials Engineering, 2022, 50 (03): : 60 - 68
  • [48] Laser diodes with 353nm wavelength enabled by reduced- dislocation-density AlGaN templates
    Crawford, Mary H.
    Allerman, Andrew A.
    Armstrong, Andrew M.
    Smith, Michael L.
    Cross, Karen C.
    APPLIED PHYSICS EXPRESS, 2015, 8 (11)
  • [49] Quasistatic evolution for dislocation-free finite plasticity
    Kruzik, Martin
    Melching, David
    Stefanelli, Ulisse
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
  • [50] Dislocation pattern formation in finite deformation crystal plasticity
    Arora, Rajat
    Acharya, Amit
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2020, 184 (184) : 114 - 135