Linearization for finite plasticity under dislocation-density tensor regularization

被引:0
|
作者
Riccardo Scala
Ulisse Stefanelli
机构
[1] Università di Siena San Niccolò,Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche
[2] University of Vienna,Faculty of Mathematics
[3] Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes” - CNR,undefined
来源
关键词
Finite plasticity; Linearization; -convergence; Incremental problem;
D O I
暂无
中图分类号
学科分类号
摘要
Finite-plasticity theories often feature nonlocal energetic contributions in the plastic variables. By introducing a length-scale for plastic effects in the picture, these nonlocal terms open the way to existence results (Mainik and Mielke in J Nonlinear Sci 19(3):221–248, 2009). We focus here on a reference example in this direction, where a specific energetic contribution in terms of dislocation-density tensor is considered (Mielke and Müller in ZAMM Z Angew Math Mech 86:233–250, 2006). When external forces are small and dissipative terms are suitably rescaled, the finite-strain elastoplastic problem converges toward its linearized counterpart. We prove a Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-convergence result making this asymptotics rigorous, both at the incremental level and at the level of quasistatic evolution.
引用
收藏
页码:179 / 208
页数:29
相关论文
共 50 条
  • [31] Finite strain discrete dislocation plasticity
    Deshpande, VS
    Needleman, A
    Van der Giessen, E
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2003, 51 (11-12) : 2057 - 2083
  • [32] PROPERTIES OF ACOUSTICAL TENSOR IN FINITE PLASTICITY
    DESCATHA, Y
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 277 (03): : 183 - 186
  • [33] The dislocation configurational energy density in discrete dislocation plasticity
    Zheng, Zebang
    Prastiti, Nikoletta G.
    Balint, Daniel S.
    Dunne, Fionn P. E.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2019, 129 : 39 - 60
  • [34] On the microscopic definitions of the dislocation density tensor
    Mandadapu, Kranthi K.
    Jones, Reese E.
    Zimmerman, Jonathan A.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2014, 19 (07) : 744 - 757
  • [35] Analysis and comparison of two finite element algorithms for dislocation density based crystal plasticity
    Klusemann, B. (benjamin.klusemann@tu-harburg.de), 1600, Wiley-VCH Verlag (36):
  • [36] Dielectric response of thick low dislocation-density Ge epilayers grown on (001) Si
    Junge, KE
    Lange, R
    Dolan, JM
    Zollner, S
    Dashiell, M
    Orner, BA
    Kolodzey, J
    APPLIED PHYSICS LETTERS, 1996, 69 (26) : 4084 - 4086
  • [37] Intergranular fracture, grain-boundary structure, and dislocation-density interactions in FCC bicrystals
    Chen, Muh-Jang
    Xie, Dongyue
    Fensin, Saryu
    Hunter, Abigail
    Li, Nan
    Zikry, Mohammed A.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [38] EXISTENCE FOR DISLOCATION-FREE FINITE PLASTICITY
    Stefanelli, Ulisse
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2019, 25
  • [39] Microstructural modeling in f.c.c. crystalline materials in a unified dislocation-density framework
    Rezvanian, O.
    Zikry, M. A.
    Rajendran, A. M.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 494 (1-2): : 80 - 85
  • [40] Experimental characterization of the mesoscale dislocation density tensor
    Larson, B. C.
    El-Azab, Anter
    Yang, Wenge
    Tischler, J. Z.
    Liu, Wenjun
    Ice, G. E.
    PHILOSOPHICAL MAGAZINE, 2007, 87 (8-9) : 1327 - 1347