On global existence and blowup of solutions of Stochastic Keller–Segel type equation

被引:0
|
作者
Oleksandr Misiats
Oleksandr Stanzhytskyi
Ihsan Topaloglu
机构
[1] Virginia Commonwealth University,Department of Mathematics and Applied Mathematics
[2] Taras Shevchenko National University of Kiev,Department of Mathematics
关键词
Keller–Segel equation; Stochastic partial differential equation; Blowup; Local and global solutions; 35B44; 35K55; 60H30; 65M75;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider a stochastic Keller–Segel type equation, perturbed with random noise. We establish that for special types of random pertubations (i.e. in a divergence form), the equation has a global weak solution for small initial data. Furthermore, if the noise is not in a divergence form, we show that the solution has a finite time blowup (with nonzero probability) for any nonzero initial data. The results on the continuous dependence of solutions on the small random perturbations, alongside with the existence of local strong solutions, are also derived in this work.
引用
收藏
相关论文
共 50 条
  • [41] EXISTENCE OF SOLUTIONS TO THE PATLAK--KELLER--SEGEL--NAVIER--STOKES SYSTEM
    Gao, Yuetian
    Han, Fangyu
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (05) : 6798 - 6821
  • [42] Type II blowup in a doubly parabolic Keller-Segel system in two dimensions
    Mizoguchi, Noriko
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (11) : 3323 - 3347
  • [43] A GENERAL EXISTENCE RESULT FOR STATIONARY SOLUTIONS TO THE KELLER-SEGEL SYSTEM
    Battaglia, Luca
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (02) : 905 - 926
  • [44] The Microscopic Derivation and Well-Posedness of the Stochastic Keller–Segel Equation
    Hui Huang
    Jinniao Qiu
    Journal of Nonlinear Science, 2021, 31
  • [45] Collapsing-ring blowup solutions for the Keller-Segel system in three dimensions and higher
    Collot, Charles
    Ghoul, Tej-Eddine
    Masmoudi, Nader
    Nguyen, Van Tien
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (07)
  • [46] Global existence and blowup of solutions to a chemotaxis system
    Nagai, T
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (02) : 777 - 787
  • [47] Existence of type II blowup solutions for a semilinear heat equation with critical nonlinearity
    Naito, Yuki
    Suzuki, Takashi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 232 (01) : 176 - 211
  • [48] Global existence and blowup of solutions for the multidimensional sixth-order "good" Boussinesq equation
    Xu Runzhang
    Yang Yanbing
    Liu Bowei
    Shen Jihong
    Huang Shaobin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03): : 955 - 976
  • [49] Global existence and blowup of solutions for the multidimensional sixth-order “good” Boussinesq equation
    Xu Runzhang
    Yang Yanbing
    Liu Bowei
    Shen Jihong
    Huang Shaobin
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 955 - 976
  • [50] Global existence and blowup of solutions to a class of wave equations with Hartree type nonlinearity
    Zhang, Hongwei
    Su, Xiao
    Liu, Shuo
    NONLINEARITY, 2024, 37 (06)