On global existence and blowup of solutions of Stochastic Keller–Segel type equation

被引:0
|
作者
Oleksandr Misiats
Oleksandr Stanzhytskyi
Ihsan Topaloglu
机构
[1] Virginia Commonwealth University,Department of Mathematics and Applied Mathematics
[2] Taras Shevchenko National University of Kiev,Department of Mathematics
关键词
Keller–Segel equation; Stochastic partial differential equation; Blowup; Local and global solutions; 35B44; 35K55; 60H30; 65M75;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider a stochastic Keller–Segel type equation, perturbed with random noise. We establish that for special types of random pertubations (i.e. in a divergence form), the equation has a global weak solution for small initial data. Furthermore, if the noise is not in a divergence form, we show that the solution has a finite time blowup (with nonzero probability) for any nonzero initial data. The results on the continuous dependence of solutions on the small random perturbations, alongside with the existence of local strong solutions, are also derived in this work.
引用
收藏
相关论文
共 50 条
  • [21] A Global Existence Result for a Keller-Segel Type System With Supercritical Initial Data
    Bartolucci D.
    Castorina D.
    Journal of Elliptic and Parabolic Equations, 2015, 1 (2) : 243 - 262
  • [22] Layered solutions with unbounded mass for the Keller–Segel equation
    Denis Bonheure
    Jean-Baptiste Casteras
    Benedetta Noris
    Journal of Fixed Point Theory and Applications, 2017, 19 : 529 - 558
  • [23] Determination of blowup type in the parabolic-parabolic Keller-Segel system
    Mizoguchi, Noriko
    MATHEMATISCHE ANNALEN, 2020, 376 (1-2) : 39 - 60
  • [24] Global existence of solutions for a nonlinearly perturbed Keller-Segel system in R2
    Kurokiba, Masaki
    Ogawa, Takayoshi
    Takahashi, Futoshi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (05): : 840 - 867
  • [25] On the Existence of Global Smooth Solutions to the Parabolic–Elliptic Keller–Segel System with Irregular Initial Data
    Frederic Heihoff
    Journal of Dynamics and Differential Equations, 2023, 35 : 1693 - 1717
  • [26] Global existence and asymptotic behavior of classical solutions to a fractional logistic Keller-Segel system
    Zhang, Weiyi
    Liu, Zuhan
    Zhou, Ling
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 189
  • [27] Local and global existence of solutions of a Keller-Segel model coupled to the incompressible fluid equations
    Bae, Hantaek
    Kang, Kyungkeun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 333 : 407 - 435
  • [28] GLOBAL EXISTENCE OF SOLUTIONS TO A KELLER-SEGEL MODEL WITH LOGISTIC SOURCE IN R2
    Wang, Jinhuan
    Chen, Haomeng
    Zhuang, Mengdi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025,
  • [29] ON BLOWUP DYNAMICS IN THE KELLER-SEGEL MODEL OF CHEMOTAXIS
    Dejak, S. I.
    Egli, D.
    Lushnikov, P. M.
    Sigal, I. M.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2014, 25 (04) : 547 - 574
  • [30] Spatial Analyticity of Solutions to Keller-Segel Equation of Parabolic-Elliptic Type
    Yang Minghua
    Sun, Jinyi
    RESULTS IN MATHEMATICS, 2017, 72 (04) : 1653 - 1681