Kähler-Einstein metrics and projective embeddings

被引:1
|
作者
Dominique Hulin
机构
[1] Université Paris-Sud,Département de Mathématiques
来源
The Journal of Geometric Analysis | 2000年 / 10卷 / 3期
关键词
53C25; 53C55; Kähler-Einstein; projective; isometric embeddings;
D O I
10.1007/BF02921947
中图分类号
学科分类号
摘要
We prove that the complex projective space equipped with its Fubini-Study metric admits no compact Kähler-Einstein submanifold with nonpositive Einstein constant. In particular, the Calabi-Yau metrics carried by an algebraic K3 surface cannot be realized by projective embeddings.
引用
收藏
页码:525 / 528
页数:3
相关论文
共 50 条
  • [31] Deformation of conic negative Kähler-Einstein manifolds
    Yan Li
    Frontiers of Mathematics in China, 2017, 12 : 597 - 606
  • [32] Moving Symplectic Curves in Kähler-Einstein Surfaces
    Chen J.
    Tian G.
    Acta Mathematica Sinica, 2000, 16 (4) : 541 - 548
  • [33] Small angle limits of negatively curved Kähler-Einstein metrics with crossing edge singularities
    Ji, Yuxiang
    NEW YORK JOURNAL OF MATHEMATICS, 2024, 30 : 593 - 624
  • [34] Numerical Kähler-Einstein Metric on the Third del Pezzo
    Charles Doran
    Matthew Headrick
    Christopher P. Herzog
    Joshua Kantor
    Toby Wiseman
    Communications in Mathematical Physics, 2008, 282 : 357 - 393
  • [35] The limits on boundary of orbifold Kähler–Einstein metrics and Kähler–Ricci flows over quasi-projective manifolds
    Shin Kikuta
    Mathematische Annalen, 2015, 361 : 477 - 510
  • [36] Families of conic Kähler–Einstein metrics
    Henri Guenancia
    Mathematische Annalen, 2020, 376 : 1 - 37
  • [37] Kähler–Einstein metrics on Fano manifolds
    Gang Tian
    Japanese Journal of Mathematics, 2015, 10 : 1 - 41
  • [38] Quasi-Einstein Kähler Metrics
    Henrik Pedersen
    Christina Tønnesen-Friedman
    Galliano Valent
    Letters in Mathematical Physics, 1999, 50 : 229 - 241
  • [39] Conical Kähler–Einstein Metrics Revisited
    Chi Li
    Song Sun
    Communications in Mathematical Physics, 2014, 331 : 927 - 973
  • [40] Kähler–Einstein metrics on group compactifications
    Thibaut Delcroix
    Geometric and Functional Analysis, 2017, 27 : 78 - 129