Kähler-Einstein metrics and projective embeddings

被引:1
|
作者
Dominique Hulin
机构
[1] Université Paris-Sud,Département de Mathématiques
来源
The Journal of Geometric Analysis | 2000年 / 10卷 / 3期
关键词
53C25; 53C55; Kähler-Einstein; projective; isometric embeddings;
D O I
10.1007/BF02921947
中图分类号
学科分类号
摘要
We prove that the complex projective space equipped with its Fubini-Study metric admits no compact Kähler-Einstein submanifold with nonpositive Einstein constant. In particular, the Calabi-Yau metrics carried by an algebraic K3 surface cannot be realized by projective embeddings.
引用
收藏
页码:525 / 528
页数:3
相关论文
共 50 条
  • [21] Ding stability and Kähler-Einstein metrics on manifolds with big anticanonical class
    Dervan, Ruadhai
    Reboulet, Remi
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (816): : 201 - 239
  • [22] Kähler-Einstein metrics emerging from free fermions and statistical mechanics
    Robert J. Berman
    Journal of High Energy Physics, 2011
  • [23] Kähler-Einstein surface and symmetric space
    DaGuang Chen
    Yi Hong
    HongCang Yang
    Science China Mathematics, 2011, 54 : 2627 - 2634
  • [24] Strict positivity of Kähler-Einstein currents
    Guedj, Vincent
    Guenancia, Henri
    Zeriahi, Ahmed
    FORUM OF MATHEMATICS SIGMA, 2024, 12
  • [25] Khler-Einstein surface and symmetric space
    CHEN DaGuang HONG Yi YANG HongCang Department of Mathematical Sciences Tsinghua University Beijing ChinaDepartment of Mathematics South China University of Technology Guangzhou ChinaHua LooKeng Key Laboratory of Mathematics Chinese Academy of Sciences Beijing China
    Science China(Mathematics), 2011, 54 (12) : 2627 - 2634
  • [26] Uniqueness of tangent cone of Kähler-Einstein metrics on singular varieties with crepant singularities
    Xin Fu
    Mathematische Annalen, 2024, 388 : 3229 - 3258
  • [27] K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics
    Robert J. Berman
    Inventiones mathematicae, 2016, 203 : 973 - 1025
  • [28] Khler-Einstein surface and symmetric space
    CHEN DaGuang1
    2Department of Mathematics
    3Hua Loo-Keng Key Laboratory of Mathematics
    Science China Mathematics, 2011, (12) : 2627 - 2634
  • [29] Ricci flow on Kähler-Einstein surfaces
    X.X. Chen
    G. Tian
    Inventiones mathematicae, 2002, 147 : 487 - 544
  • [30] Kähler-Einstein metrics on smooth Fano toroidal symmetric varieties of type AIII
    Hong, Kyusik
    Hwang, DongSeon
    Park, Kyeong-Dong
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2024, 35 (07)