Cheeger Type Sobolev Spaces for Metric Space Targets

被引:0
|
作者
Shin-Ichi Ohta
机构
[1] Tohoku University,Mathematical Institute
来源
Potential Analysis | 2004年 / 20卷
关键词
Sobolev space; metric space; Dirichlet problem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the natural generalization of Cheeger type Sobolev spaces to maps into a metric space. We solve Dirichlet problem for CAT(0)-space targets, and obtain some results about the relation between Cheeger type Sobolev spaces for maps into a Banach space and those for maps into a subset of that Banach space. We also prove the minimality of upper pointwise Lipschitz constant functions for locally Lipschitz maps into an Alexandrov space of curvature bounded above.
引用
收藏
页码:149 / 175
页数:26
相关论文
共 50 条
  • [21] Axiomatic Sobolev spaces on metric spaces
    Gol'dshtein, V
    Troyanov, M
    FUNCTION SPACES, INTERPOLATION THEORY AND RELATED TOPICS, PROCEEDINGS, 2002, : 333 - 343
  • [22] On the continuity of Sobolev-type functions on homogeneous metric spaces
    Pomahob, A. C.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2022, 19 (02): : 460 - 483
  • [23] Sobolev-type classes of mappings with values in metric spaces
    Reshetnyak, Yu. G.
    INTERACTION OF ANALYSIS AND GEOMETRY, 2007, 424 : 209 - 226
  • [24] A Sobolev type embedding theorem for Besov spaces defined on doubling metric spaces
    Martin, Joaquim
    Ortiz, Walter A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (02) : 2302 - 2337
  • [25] Lower semicontinuity of integrals of the calculus of variations in Cheeger–Sobolev spaces
    Omar Anza Hafsa
    Jean-Philippe Mandallena
    Calculus of Variations and Partial Differential Equations, 2020, 59
  • [26] The Sobolev capacity on metric spaces
    Kinnunen, J
    Martio, O
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1996, 21 (02): : 367 - 382
  • [27] Γ-convergence of nonconvex integrals in Cheeger-Sobolev spaces and homogenization
    Hafsa, Omar Anza
    Mandallena, Jean-Philippe
    ADVANCES IN CALCULUS OF VARIATIONS, 2017, 10 (04) : 381 - 405
  • [28] Cheeger-differentiability of maps belonging to certain Sobolev spaces
    Munnier, Vincent
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2014, 142 (01): : 63 - 93
  • [29] Γ-convergence of nonconvex unbounded integrals in Cheeger-Sobolev spaces
    Hafsa, Omar Anza
    Mandallena, Jean-Philippe
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2024, 25 (01) : 77 - 125
  • [30] Grand Sobolev Spaces on Metric Measure Spaces
    Pavlov, S., V
    SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (05) : 956 - 966