Deterministic Parallel Algorithms for Bilinear Objective Functions

被引:0
|
作者
David G. Harris
机构
[1] University of Maryland,Department of Computer Science
来源
Algorithmica | 2019年 / 81卷
关键词
Derandomization; Bilinear objective; Maximal independent set; Fooling automata;
D O I
暂无
中图分类号
学科分类号
摘要
Many randomized algorithms can be derandomized efficiently using either the method of conditional expectations or probability spaces with low independence. A series of papers, beginning with work by Luby (1988), showed that in many cases these techniques can be combined to give deterministic parallel (NC) algorithms for a variety of combinatorial optimization problems, with low time- and processor-complexity. We extend and generalize a technique of Luby for efficiently handling bilinear objective functions. One noteworthy application is an NC algorithm for maximal independent set. On a graph G with m edges and n vertices, this takes O~(log2n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{O}}(\log ^2 n)$$\end{document} time and (m+n)no(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m + n) n^{o(1)}$$\end{document} processors, nearly matching the best randomized parallel algorithms. Other applications include reduced processor counts for algorithms of Berger (SIAM J Comput 26:1188–1207, 1997) for maximum acyclic subgraph and Gale–Berlekamp switching games. This bilinear factorization also gives better algorithms for problems involving discrepancy. An important application of this is to automata-fooling probability spaces, which are the basis of a notable derandomization technique of Sivakumar (In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC), pp 619–626, 2002). Our method leads to large reduction in processor complexity for a number of derandomization algorithms based on automata-fooling, including set discrepancy and the Johnson–Lindenstrauss Lemma.
引用
收藏
页码:1288 / 1318
页数:30
相关论文
共 50 条
  • [1] Deterministic Parallel Algorithms for Bilinear Objective Functions
    Harris, David G.
    ALGORITHMICA, 2019, 81 (03) : 1288 - 1318
  • [2] MULTI OBJECTIVE AERODYNAMIC OPTIMIZATION USING PARALLEL NASH EVOLUTIONARY/DETERMINISTIC HYBRID ALGORITHMS
    Tang, Zhili
    PROCEEDINGS OF THE SIXTH INTERNATIONAL SYMPOSIUM ON PHYSICS OF FLUIDS (ISPF6), 2016, 42
  • [3] THE PROBABILISTIC METHOD YIELDS DETERMINISTIC PARALLEL ALGORITHMS
    MOTWANI, R
    NAOR, J
    NAOR, M
    30TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 1989, : 8 - 13
  • [5] Internally Deterministic Parallel Algorithms Can Be Fast
    Blelloch, Guy E.
    Fineman, Jeremy T.
    Gibbons, Phillip B.
    Shun, Julian
    ACM SIGPLAN NOTICES, 2012, 47 (08) : 181 - 192
  • [6] THE PROBABILISTIC METHOD YIELDS DETERMINISTIC PARALLEL ALGORITHMS
    MOTWANI, R
    NAOR, JS
    NAOR, M
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1994, 49 (03) : 478 - 516
  • [7] PARALLEL AND DETERMINISTIC ALGORITHMS FROM MRFS - SURFACE RECONSTRUCTION
    GEIGER, D
    GIROSI, F
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (05) : 401 - 412
  • [8] Hierarchical Clustering: Objective Functions and Algorithms
    Cohen-Addad, Vincent
    Kanade, Varun
    Mallmann-Trenn, Frederik
    Mathieu, Claire
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 378 - 397
  • [9] Hierarchical Clustering: Objective Functions and Algorithms
    Cohen-Addad, Vincent
    Kanade, Varun
    Mallmann-Trenn, Frederik
    Mathieu, Claire
    JOURNAL OF THE ACM, 2019, 66 (04)
  • [10] Bi-objective path planning using deterministic algorithms
    Davoodi, Mansoor
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2017, 93 : 105 - 115