Rigidity of spacelike LW-submanifolds in the de Sitter space

被引:0
|
作者
Henrique F. de Lima
Lucas S. Rocha
Marco Antonio L. Velásquez
机构
[1] Universidade Federal de Campina Grande,Departamento de Matemática
关键词
De Sitter space; Complete spacelike linear Weingarten submanifolds; Totally umbilical submanifolds; Convergence to zero at infinity; Polynomial volume growth; Primary 53C42; Secondary 53C20; 53C50;
D O I
暂无
中图分类号
学科分类号
摘要
We establish new rigidity theorems for n-dimensional spacelike linear Weingarten (LW) submanifolds immersed with parallel normalized mean curvature vector in the (n+p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n+p)$$\end{document}-dimensional de Sitter space Spn+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}}_p^{n+p}$$\end{document} of index p. Initially, supposing that the norm of the total umbilicity tensor converges to zero at infinity, we show that such a complete noncompact spacelike LW-submanifold of Spn+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}}_p^{n+p}$$\end{document} must be either isometric to the Euclidian space Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document} or the hyperbolic space Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^{n}$$\end{document}. Afterwards, under the assumption that such a complete spacelike LW-submanifold of Spn+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}}_p^{n+p}$$\end{document} has polynomial volume growth, we prove that it must be either isometric to the Euclidean space Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document} or a Euclidian sphere Sn(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}}^n(r)$$\end{document} with radius r>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r>0$$\end{document}. Our approach is based on suitable maximum principles due to Alías, Caminha and do Nascimento (Alías in J Math Anal Appl 474:242–247, 2019, Alías in Ann Mat Pura Appl 200:1637–1650, 2021) related to complete noncompact Riemannian manifolds.
引用
收藏
页码:2389 / 2407
页数:18
相关论文
共 50 条
  • [1] Rigidity of spacelike LW-submanifolds in the de Sitter space
    de Lima, Henrique F.
    Rocha, Lucas S.
    Velasquez, Marco Antonio L.
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (04) : 2389 - 2407
  • [2] SPACELIKE SUBMANIFOLDS IN DE SITTER SPACE
    Kasedou, Masaki
    [J]. DEMONSTRATIO MATHEMATICA, 2010, 43 (02) : 401 - 418
  • [3] Spacelike submanifolds of codimension two in de Sitter space
    Kasedou, Masaki
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (01) : 31 - 42
  • [4] Linear Weingarten spacelike submanifolds in de Sitter space
    Yang, Dan
    Hou, Zhonghua
    [J]. JOURNAL OF GEOMETRY, 2012, 103 (01) : 177 - 190
  • [5] Linear Weingarten spacelike submanifolds in de Sitter space
    Dan Yang
    Zhonghua Hou
    [J]. Journal of Geometry, 2012, 103 (1) : 177 - 190
  • [6] LIGHTLIKE HYPERSURFACES ALONG SPACELIKE SUBMANIFOLDS IN DE SITTER SPACE
    Izumiya, Shyuichi
    Sato, Takami
    [J]. JOURNAL OF SINGULARITIES, 2014, 10 : 157 - 173
  • [7] ON THE PARABOLICITY OF LINEAR WEINGARTEN SPACELIKE SUBMANIFOLDS IN THE DE SITTER SPACE
    Antonia, Railane
    de Lima, Henrique F.
    [J]. QUAESTIONES MATHEMATICAE, 2022, 45 (10) : 1589 - 1602
  • [8] Timelike canal hypersurfaces of spacelike submanifolds in a de Sitter space
    Kasedou, Masaki
    [J]. REAL AND COMPLEX SINGULARITIES, 2012, 569 : 87 - 100
  • [9] On the umbilicity of linear Weingarten spacelike submanifolds immersed in the de Sitter space
    Barboza, Weiller F. C.
    de Lima, Eudes L.
    de Lima, Henrique F.
    Velasquez, Marco Antonio L.
    [J]. BULLETIN OF MATHEMATICAL SCIENCES, 2022, 12 (02)
  • [10] Characterizations of Spacelike Submanifolds with Constant Scalar Curvature in the de Sitter Space
    Alias, Luis J.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (01)