An efficient lightweight convolutional neural network for industrial surface defect detection

被引:0
|
作者
Dehua Zhang
Xinyuan Hao
Dechen Wang
Chunbin Qin
Bo Zhao
Linlin Liang
Wei Liu
机构
[1] Henan University,School of Artificial Intelligence
[2] Beijing Normal University,School of Systems Science
[3] Beijing,School of Cyber Engineering
[4] Xidian University,College of Electromechanic Engineering
[5] Nanyang Normal University,undefined
来源
关键词
Lightweight convolutional neural networks; Surface defect detection; Attention mechanism; Feature pyramid networks;
D O I
暂无
中图分类号
学科分类号
摘要
Since surface defect detection is significant to ensure the utility, integrality, and security of productions, and it has become a key issue to control the quality of industrial products, which arouses interests of researchers. However, deploying deep convolutional neural networks (DCNNs) on embedded devices is very difficult due to limited storage space and computational resources. In this paper, an efficient lightweight convolutional neural network (CNN) model is designed for surface defect detection of industrial productions in the perspective of image processing via deep learning. By combining the inverse residual architecture with coordinate attention (CA) mechanism, a coordinate attention mobile (CAM) backbone network is constructed for feature extraction. Then, in order to solve the small object detection problem, the multi-scale strategy is developed by introducing the CA into the cross-layer information flow to improve the quality of feature extraction and augment the representation ability on multi-scale features. Hereafter, the multi-scale feature is integrated to design a novel bidirectional weighted feature pyramid network (BWFPN) to improve the model detection accuracy without increasing much computational burden. From the comparative experimental results on open source datasets, the effectiveness of the developed lightweight CNN is evaluated, and the detection accuracy attains on par with the state-of-the-art (SOTA) model with less parameters and calculation.
引用
收藏
页码:10651 / 10677
页数:26
相关论文
共 50 条
  • [31] Surface defect detection and semantic segmentation with a novel lightweight deep neural network
    Huang, Qiang
    Li, Fudong
    Yang, Yuequan
    Tao, Xian
    Li, Wei
    Wang, Xu
    Wang, Yong
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (08)
  • [32] A lightweight solution of industrial computed tomography with convolutional neural network
    Zhu, Guogang
    Fu, Jian
    NDT & E INTERNATIONAL, 2020, 116
  • [33] Efficient J Peak Detection From Ballistocardiogram Using Lightweight Convolutional Neural Network
    Huang, Yongfeng
    Jin, Tianchen
    Sun, Chenxi
    Li, Xueyang
    Yang, Shuchen
    Zhang, Zhiming
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 269 - 272
  • [34] Lane Detection Based on a Lightweight Convolutional Neural Network
    Hu Jie
    Xiong Zongquan
    Xu Wencai
    Cao Kai
    Lu Ruoyu
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (10)
  • [35] A Lightweight Convolutional Neural Network-Reformer Model for Efficient Epileptic Seizure Detection
    Cui, Haozhou
    Zhong, Xiangwen
    Li, Haotian
    Li, Chuanyu
    Dong, Xingchen
    Ji, Dezan
    He, Landi
    Zhou, Weidong
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2024, 34 (12)
  • [36] A Lightweight Convolutional Neural Network Flame Detection Algorithm
    Li, Wenzheng
    Yu, Zongyang
    PROCEEDINGS OF 2021 IEEE 11TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2021), 2021, : 83 - 86
  • [37] A Lightweight Convolutional Neural Network for Salient Object Detection
    Fei, Fengchang
    Liu, Wei
    Shu, Lei
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2024, 31 (04): : 1402 - 1410
  • [38] A convolutional neural network-based method for workpiece surface defect detection
    Xing, Junjie
    Jia, Minping
    Measurement: Journal of the International Measurement Confederation, 2021, 176
  • [39] A convolutional neural network-based method for workpiece surface defect detection
    Xing, Junjie
    Jia, Minping
    MEASUREMENT, 2021, 176
  • [40] Surface defect detection for wire ropes based on deep convolutional neural network
    Zhou Ping
    Zhou Gongbo
    Li Yingming
    He Zhenzhi
    PROCEEDINGS OF 2019 14TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), 2019, : 855 - 860