AM-UNet: automated mini 3D end-to-end U-net based network for brain claustrum segmentation

被引:0
|
作者
Ahmed Awad Albishri
Syed Jawad Hussain Shah
Seung Suk Kang
Yugyung Lee
机构
[1] University of Missouri-Kansas City,School of Computing and Engineering
[2] Saudi Electronic University,College of Computing and Informatics
[3] University of Missouri-Kansas City,Department of Psychiatry Biomedical Sciences, School of Medicine
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Recent advances in deep learning (DL) have provided promising solutions to medical image segmentation. Among existing segmentation approaches, the U-Net-based methods have been used widely. However, very few U-Net-based studies have been conducted on automatic segmentation of the human brain claustrum (CL). The CL segmentation is challenging due to its thin, sheet-like structure, heterogeneity of its image modalities and formats, imperfect labels, and data imbalance. We propose an automatic optimized U-Net-based 3D segmentation model, called AM-UNet, designed as an end-to-end process of the pre and post-process techniques and a U-Net model for CL segmentation. It is a lightweight and scalable solution which has achieved the state-of-the-art accuracy for automatic CL segmentation on 3D magnetic resonance images (MRI). On the T1/T2 combined MRI CL dataset, AM-UNet has obtained excellent results, including Dice, Intersection over Union (IoU), and Intraclass Correlation Coefficient (ICC) scores of 82%, 70%, and 90%, respectively. We have conducted the comparative evaluation of AM-UNet with other pre-existing models for segmentation on the MRI CL dataset. As a result, medical experts confirmed the superiority of the proposed AM-UNet model for automatic CL segmentation. The source code and model of the AM-UNet project is publicly available on GitHub: https://github.com/AhmedAlbishri/AM-UNET.
引用
下载
收藏
页码:36171 / 36194
页数:23
相关论文
共 50 条
  • [21] NDNN based U-Net: An Innovative 3D Brain Tumor Segmentation Method
    Trivedi, Sandeep
    Patel, Nikhil
    Faruqui, Nuruzzaman
    2022 IEEE 13TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2022, : 538 - 546
  • [22] 3D U-Net Based Brain Tumor Segmentation and Survival Days Prediction
    Wang, Feifan
    Jiang, Runzhou
    Zheng, Liqin
    Meng, Chun
    Biswal, Bharat
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT I, 2020, 11992 : 131 - 141
  • [23] A Multi Brain Tumor Region Segmentation Model Based on 3D U-Net
    Li, Zhenwei
    Wu, Xiaoqin
    Yang, Xiaoli
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [24] 3D Automatic Brain Tumor Segmentation Using a Multiscale Input U-Net Network
    Gonzalez, S. Rosas
    Sekou, T. Birgui
    Hidane, M.
    Tauber, C.
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 113 - 123
  • [25] Automated Brain Tumour Segmentation Using Cascaded 3D Densely-Connected U-Net
    Ghaffari, Mina
    Sowmya, Arcot
    Oliver, Ruth
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 481 - 491
  • [26] Automatic brain tumor segmentation from Multiparametric MRI based on cascaded 3D U-Net and 3D U-Net++
    Li, Pengyu
    Wu, Wenhao
    Liu, Lanxiang
    Serry, Fardad Michael
    Wang, Jinjia
    Han, Hui
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [27] Automated segmentation of 3D anatomical structures on CT images by using a deep convolutional network based on end-to-end learning approach
    Zhou, Xiangrong
    Takayama, Ryosuke
    Wang, Song
    Zhou, Xinxin
    Hara, Takeshi
    Fujita, Hiroshi
    MEDICAL IMAGING 2017: IMAGE PROCESSING, 2017, 10133
  • [28] Unsupervised 3D End-to-end Deformable Network for Brain MRI Registration
    Zhu, Zhenyu
    Cao, Yiqin
    Qin, Chenchen
    Rao, Yi
    Ni, Dong
    Wang, Yi
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1355 - 1359
  • [29] Automated 3D U-net based segmentation of neonatal cerebral ventricles from 3D ultrasound images
    Szentimrey, Zachary
    de Ribaupierre, Sandrine
    Fenster, Aaron
    Ukwatta, Eranga
    MEDICAL PHYSICS, 2022, 49 (02) : 1034 - 1046
  • [30] Blood Vessel Segmentation Based on the 3D Residual U-Net
    Xin, Mulin
    Wen, Jing
    Wang, Yi
    Yu, Wei
    Fang, Bin
    Hu, Jun
    Xu, Yongmei
    Linghu, Chunhong
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (11)