Blood Vessel Segmentation Based on the 3D Residual U-Net

被引:2
|
作者
Xin, Mulin [1 ]
Wen, Jing [1 ]
Wang, Yi [1 ]
Yu, Wei [1 ]
Fang, Bin [1 ]
Hu, Jun [2 ]
Xu, Yongmei [2 ]
Linghu, Chunhong [2 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 401331, Peoples R China
[2] Army Mil Med Univ, Southwest Hosp, Chongqing 401331, Peoples R China
关键词
3D residual U-Net; blood vessel segmentation; weighted Dice loss function; two-stage;
D O I
10.1142/S021800142157007X
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose blood vessel segmentation based on the 3D residual U-Net method. First, we integrate the residual block structure into the 3D U-Net. By exploring the influence of adding residual blocks at different positions in the 3D U-Net, we establish a novel and effective 3D residual U-Net. In addition, to address the challenges of pixel imbalance, vessel boundary segmentation, and small vessel segmentation, we develop a new weighted Dice loss function with a better effect than the weighted cross-entropy loss function. When training the model, we adopted a two-stage method from coarse-to-fine. In the fine stage, a local segmentation method of 3D sliding window is added. In the model testing phase, we used the 3D fixed-point method. Furthermore, we employ the 3D morphological closed operation to smooth the surfaces of vessels and volume analysis to remove noise blocks. To verify the accuracy and stability of our method, we compare our method with FCN, 3D DenseNet, and 3D U-Net. The experimental results indicate that our method has higher accuracy and better stability than the other studied methods and that the average Dice coefficients for hepatic veins and portal veins reach 71.7% and 76.5% in the coarse stage and 72.5% and 77.2% in the fine stage, respectively. In order to verify the robustness of the model, we conducted the same comparative experiment on the brain vessel datasets, and the average Dice coefficient reached 87.2%.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Brain Tumor Segmentation Based on 3D Residual U-Net
    Bhalerao, Megh
    Thakur, Siddhesh
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 218 - 225
  • [2] LIVER VESSELS SEGMENTATION BASED ON 3D RESIDUAL U-NET
    Yu, Wei
    Fang, Bin
    Liu, Yongqing
    Gao, Mingqi
    Zheng, Shenhai
    Wang, Yi
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 250 - 254
  • [3] RESIDUAL U-NET FOR RETINAL VESSEL SEGMENTATION
    Li, Di
    Dharmawan, Dhimas Arief
    Ng, Boon Poh
    Rahardja, Susanto
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1425 - 1429
  • [4] Residual 3D U-Net with Localization for Brain Tumor Segmentation
    Demoustier, Marc
    Khemir, Ines
    Nguyen, Quoc Duong
    Martin-Gaffe, Lucien
    Boutry, Nicolas
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 : 389 - 399
  • [5] 3D Neuron Segmentation Based on 3D DSAC U-Net
    Guilin University of Electronic Technology, School of Computer Science and Information Security, Guilin
    541004, China
    不详
    514000, China
    不详
    541004, China
    不详
    541004, China
    Proc. - Int. Conf. Digit. Home, ICDH, (322-326):
  • [6] Medical Image Segmentation Based on 3D U-net
    Chen, Silu
    Hu, Guanghao
    Sun, Jun
    2020 19TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS FOR BUSINESS ENGINEERING AND SCIENCE (DCABES 2020), 2020, : 130 - 133
  • [7] Chaining a U-Net With a Residual U-Net for Retinal Blood Vessels Segmentation
    Alfonso Francia, Gendry
    Pedraza, Carlos
    Aceves, Marco
    Tovar-Arriaga, Saul
    IEEE ACCESS, 2020, 8 : 38493 - 38500
  • [8] MSR U-Net: An Improved U-Net Model for Retinal Blood Vessel Segmentation
    Kande, Giri Babu
    Ravi, Logesh
    Kande, Nitya
    Nalluri, Madhusudana Rao
    Kotb, Hossam
    Aboras, Kareem M.
    Yousef, Amr
    Ghadi, Yazeed Yasin
    Sasikumar, A.
    IEEE ACCESS, 2024, 12 : 534 - 551
  • [9] R2U3D: Recurrent Residual 3D U-Net for Lung Segmentation
    Kadia, Dhaval D.
    Alom, Md Zahangir
    Burada, Ranga
    Nguyen, Tam, V
    Asari, Vijayan K.
    IEEE ACCESS, 2021, 9 : 88835 - 88843
  • [10] MSR U-Net: An Improved U-Net Model for Retinal Blood Vessel Segmentation
    Kande, Giri Babu
    Ravi, Logesh
    Kande, Nitya
    Nalluri, Madhusudana Rao
    Kotb, Hossam
    Aboras, Kareem M.
    Yousef, Amr
    Ghadi, Yazeed Yasin
    Sasikumar, A.
    IEEE Access, 2024, 12 : 534 - 551