A bridge connecting Lebesgue and Morrey spaces via Riesz norms

被引:0
|
作者
Jin Tao
Dachun Yang
Wen Yuan
机构
[1] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences
关键词
Euclidean space; Cube; Lebesgue space; Morrey space; John–Nirenberg–Campanato space; Duality; Riesz–Morrey space; 42B35; 42B30; 46E30; 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, via combining Riesz norms with Morrey norms, the authors introduce and study the so-called Riesz–Morrey space, which differs from the John–Nirenberg–Campanato space in subtracting integral means. These spaces provide a bridge connecting both Lebesgue spaces and Morrey spaces which prove to be the endpoint spaces of Riesz–Morrey spaces. Moreover, the authors introduce a block-type space which proves to be the predual space of the Riesz–Morrey space.
引用
收藏
相关论文
共 50 条
  • [1] A bridge connecting Lebesgue and Morrey spaces via Riesz norms
    Tao, Jin
    Yang, Dachun
    Yuan, Wen
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (01)
  • [2] On a bridge connecting Lebesgue and Morrey spaces in view of their growth properties
    Haroske, Dorothee D.
    Moura, Susana D.
    Skrzypczak, Leszek
    [J]. ANALYSIS AND APPLICATIONS, 2024, 22 (04) : 751 - 790
  • [3] Bessel-Riesz Operators on Lebesgue Spaces and Morrey Spaces Defined in Measure Metric Spaces
    Mehmood, Saba
    Eridanl
    Fatmawati
    Raza, Wasim
    [J]. INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023
  • [4] The Boundedness of the Riesz Potential Operator from Generalized Grand Lebesgue Spaces to Generalized Grand Morrey Spaces
    Umarkhadzhiev, Salaudin
    [J]. OPERATOR THEORY, OPERATOR ALGEBRAS AND APPLICATIONS, 2014, 242 : 363 - 373
  • [5] Equivalence of norms of Riesz potential and fractional maximal function in generalized Morrey spaces
    Gogatishvili, Amiran
    Mustafayev, Rza
    [J]. COLLECTANEA MATHEMATICA, 2012, 63 (01) : 11 - 28
  • [6] Equivalence of norms of Riesz potential and fractional maximal function in generalized Morrey spaces
    Amiran Gogatishvili
    Rza Mustafayev
    [J]. Collectanea Mathematica, 2012, 63 : 11 - 28
  • [7] Characterizations of the BMO and Lipschitz Spaces via Commutators on Weak Lebesgue and Morrey Spaces
    Ding-huai WANG
    Jiang ZHOU
    [J]. Acta Mathematicae Applicatae Sinica, 2023, 39 (03) : 583 - 590
  • [8] Characterizations of the BMO and Lipschitz Spaces via Commutators on Weak Lebesgue and Morrey Spaces
    Ding-huai Wang
    Jiang Zhou
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2023, 39 : 583 - 590
  • [9] Characterizations of the BMO and Lipschitz Spaces via Commutators on Weak Lebesgue and Morrey Spaces
    Wang, Ding-huai
    Zhou, Jiang
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2023, 39 (03): : 583 - 590
  • [10] Nontriviality of Riesz-Morrey spaces
    Zeng, Zongze
    Chang, Der-Chen
    Tao, Jin
    Yang, Dachun
    [J]. APPLICABLE ANALYSIS, 2022, 101 (18) : 6548 - 6572